

Original Research Article

Open Access

Accessibility Enhancement Methods for Mobile Applications Based on Large Language Models

Hong-Bin Tang*

GTCOM Technology Co., Ltd., Beijing 100000, China

*Correspondence to: Hong-Bin Tang, GTCOM Technology Co., Ltd., Beijing 100000, China

Abstract: Enhancing the accessibility of mobile applications must prioritize user diversity, particularly the needs of users with various types of impairments. In terms of functional requirements, features such as font adjustment and voice control should be provided to adapt to diverse user groups. Interface design must be concise and intuitive, support high contrast and large fonts, and maintain compatibility with assistive technologies. Leveraging Large Language Models (LLMs) can significantly enhance mobile application accessibility through: hands-free operation via intelligent voice interaction; interpretation of images and interface elements to assist visually impaired users in content comprehension; interaction flow assistance to simplify operational steps; and accessibility testing and feedback to ensure applications remain user-friendly for all. Collectively, these methods improve both the accessibility and the overall user experience of mobile applications.

Keywords: Large Language Model; Mobile Application; Accessibility Enhancement

Introduction

In the digital era, mobile applications have become an indispensable part of daily life. However, for users with visual, auditory, or motor impairments, many applications still present significant barriers to usage. The emergence of Large Language Models (LLMs) has brought new opportunities for enhancing the accessibility of mobile applications. By leveraging the powerful capabilities of LLMs, we can implement more intelligent voice interactions, more accurate image interpretations, smoother interaction flows, and more comprehensive accessibility testing. This will facilitate the creation of more inclusive and accessible mobile applications, ensuring that the power of

technology benefits every user and jointly building a barrier-free digital future.

1. The Role of LLMs in Enhancing Mobile Application Accessibility

Large Language Models play a crucial role in enhancing the accessibility of mobile applications. With the rapid advancement of artificial intelligence, LLMs, characterized by their robust natural language processing and logical reasoning capabilities, have brought revolutionary changes to accessibility improvements. In the field of mobile accessibility, LLMs can deeply comprehend user language input—whether text or speech—and provide accurate responses. This is particularly vital for special groups,

© The Author(s) 2026. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

such as the visually or hearing impaired, who may be unable to interact directly with applications through traditional visual or auditory means. Through functions such as text-to-speech and speech-to-text, LLMs enable these users to easily acquire information and engage in effective interaction ^[1]. Furthermore, LLMs can provide personalized services based on users' historical behaviors and preferences. For instance, by analyzing search records and browsing history, LLMs can predict user needs and proactively recommend relevant content or services. Such personalized services not only improve the user experience but also enhance the accessibility of mobile applications. During the enhancement process, LLMs can also be integrated with other assistive technologies, such as eye-tracking and gesture control, to form more comprehensive barrier-free solutions, providing users with more convenient and natural modes of interaction.

2. Requirement Analysis for Mobile Application Accessibility Enhancement

2.1 Identification of User Diversity

2.1.1 Identification of Needs for Users with Disabilities

Users with disabilities face numerous challenges when using mobile applications. Visually impaired users cannot acquire interface information visually; therefore, applications must provide text-to-speech functions to convert interface text into audio output, while employing high-contrast colors and adjustable font sizes to ensure information clarity. Hearing-impaired users rely on captions and vibration feedback to receive information; applications should ensure all audio content is equipped with accurate captions and provide vibration alerts. Additionally, for users with motor impairments, applications should support voice control and external assistive device integration to simplify operation processes and lower the difficulty of use, allowing disabled users to easily enjoy the convenience of mobile technology.

2.1.2 Identification of Needs for Elderly Users

As a significant demographic, elderly users have unique requirements. Due to the gradual decline in physiological functions such as vision and hearing, they often encounter inconveniences when using mobile apps. Consequently, interface design should

fully consider their actual needs, providing large fonts and high-contrast designs to ensure readability, while keeping the interface simple to avoid information overload. In terms of operation flows, applications should provide clear prompts, simplify steps, and eliminate redundant functions to ensure ease of use. Furthermore, addressing the characteristic of memory decline in elderly users, applications should provide personalized settings and memory aids, such as shortcuts to frequently used functions and history logs, enhancing the user experience through thoughtful design.

2.1.3 Identification of Needs for Other Special User Groups

Beyond disabled and elderly users, attention must be paid to other special groups. In specific environments, such as noisy factories or busy hospitals, users may find it difficult to hear audio prompts. Thus, applications should provide vibration or visual alerts to ensure users receive important information promptly. For color-blind or color-weak users, the design should employ high-contrast or easily distinguishable color combinations, and even use patterns to assist in information transmission. With increasing globalization, applications should support multi-language interfaces and localized content to meet the needs of users from diverse linguistic and cultural backgrounds, ensuring technology truly benefits everyone and builds an inclusive application environment.

2.2 Functional Requirements

Functional requirements for accessibility enhancement focus on adapting to the special needs of different user groups. First, for visually impaired users, applications should provide text-to-speech and high-contrast designs, alongside font-size adjustment for reading comfort. Second, for hearing-impaired users, comprehensive captioning services and vibration feedback are essential for perceiving system notifications or operation results. Third, for users with motor impairments and other special needs, applications should support diverse interaction modes, such as voice control and gesture recognition, to reduce operational difficulty ^[2]. Additionally, personalized setting options should be provided to allow users to adjust functions and interface layouts according to their

habits.

2.3 Interface Design Requirements

Interface design should focus on five key aspects: (1) Intuitiveness and Simplicity: Designs should be easy to understand with clear functional areas, which is crucial for users with cognitive impairments. (2) Adjustability: Support for personalizing font size and color contrast. (3) Color and Contrast: Selection of high-contrast colors suitable for color-blind users. (4) Interaction Diversity: Providing touch, voice, and gesture interactions to cater to different physical needs. (5) Assistive Technology Compatibility: Ensuring the interface is compatible with screen readers and magnifiers by considering accessibility during the design phase.

3. Analysis of Accessibility Enhancement Methods Based on LLMs

3.1 Intelligent Voice Interaction

3.1.1 Integration of Speech Recognition Technology

The essence of intelligent voice interaction lies in the deep integration of speech recognition. LLMs, as the core support, can accurately capture and recognize user voice input, rapidly converting it into text to bridge the gap between the user and the application. This is a significant boon for visually or motor-impaired users, as it eliminates the need to find buttons or touch screens, allowing operations to be completed via simple voice commands. Furthermore, LLMs' continuous learning capabilities continuously improve recognition accuracy, making the interaction process more natural.

3.1.2 Personalized Customization of Speech Synthesis

Speech synthesis is equally vital. LLMs can generate personalized voice outputs based on user preferences. For hearing-impaired users, clear and accurate synthesis helps in understanding application feedback. Moreover, parameters like speed and pitch can be flexibly customized according to the user's actual hearing condition, ensuring accurate information delivery and enhancing user comfort.

3.1.3 Expansion of Voice Interaction Scenarios

With the refinement of LLMs, voice interaction is expanding into diverse scenarios, from daily searches and navigation to shopping, social interaction, and

entertainment. Users can achieve hands-free operation for purchasing items or sending messages, which significantly enhances the inclusivity and accessibility of mobile applications.

3.2 Interpretation of Images and Interface Elements

LLMs play a critical role in interpreting visual content: (1) Image Recognition and Description: LLMs identify image content and generate descriptive text for visually impaired users. (2) Tagging Interface Elements: Semantic tags help screen readers read element information accurately and allow users to locate elements via voice commands. (3) Automated Testing and Optimization: Models can identify potential accessibility barriers by simulating different user interactions and providing optimization suggestions. (4) Personalized Assistive Settings: Users can adjust the detail of image descriptions. (5) Continuous Learning: Models optimize their interpretative capabilities as interfaces update.

3.3 Interaction Flow Assistance

A smooth interaction flow is critical, as complex flows can hinder users with cognitive or operational impairments. LLMs can identify bottlenecks by analyzing behavioral data, such as the number of steps or error rates required for tasks. Based on this, LLMs can suggest improvements like simplifying steps or optimizing layouts^[3]. During operation, the model provides intelligent prompts based on context to guide users, increasing operational efficiency and user confidence.

3.4 Accessibility Testing and Feedback

Accessibility testing ensures applications are friendly to all users. LLMs can simulate the interaction behaviors of users with different impairments to conduct comprehensive testing. By simulating screen readers or voice controls, the model reveals accessibility issues like insufficient contrast or lack of navigation. These feedbacks provide developers with clear optimization directions through detailed reports on issue location and severity. LLMs can also continuously monitor performance to ensure accessibility is maintained during updates and iterations.

Conclusion

In the future, we will continue to explore the infinite possibilities of LLMs in the field of mobile

accessibility. As technology advances, we will further excavate the potential of LLMs to apply them across all levels of mobile applications, from voice interaction to image recognition and interface design. We believe that the power of technology should benefit everyone, regardless of their impairments. We will uphold this philosophy to let the light of technology illuminate every corner and jointly build an accessible, inclusive, and harmonious digital world.

References

[1] Ma Qimin, Li Xiangmin, Zhou Yaqian.

Accessibility Enhancement Method for Mobile Applications Based on Large Language Models [J]. Computer Science, 2024, 51(12): 223-233.

[2] Ren Yuankai, Xie Zhenping. Precision Enhancement Method for Domain Intent in Large Language Models [J]. Computer Application Research, 2024, 41(10): 2893-2899.

[3] Li Xiangmin, Shen Liwei, Dong Zhen. Accessibility Enhancement Method for Mobile Applications Based on Record and Playback [J]. Computer Science, 2023, 50(12): 32-48.