
© The Author(s) 2026. www.omniscient.sg

 © The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License
 (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and
reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Journal of Applied Linguistics and Communication Studies Vol 1 Issue 1 2026

	

Original Research Article

Open Access

Empowering Inquiry-Based Higher Vocational
Education with Large Language Models: A Case Study
of Python Language Course

Ying-Chuan Tang*

Neusoft Institute Sichuan, Chengdu, Sichuan 611844, China

*Correspondence to: Ying-Chuan Tang, Neusoft Institute Sichuan, Chengdu, Sichuan 611844, China

Abstract: With the rapid iteration of Large Language Models (LLMs), their applications have permeated
various fields, demonstrating significant value in higher vocational education. Research indicates that the
traditional Inquiry-Based Learning (IBL) model faces challenges such as feedback latency, disconnection
between industry and education, and homogenized evaluation dimensions. Taking the Python language
course as an example, this paper analyzes the current limitations of the IBL model. It explores a path to refine
traditional IBL in terms of course content and evaluation systems by integrating LLM-based agents. The study
aims to provide a novel approach for higher vocational education to enhance the quality of instructional content.
Keywords: Inquiry-Based Learning; Large Language Model; Higher Vocational Education

1. Research Background

Inquiry-Based Learning (IBL) is a student-centered
instructional model that emphasizes knowledge
construction through active exploration, problem-

solving, and critical thinking. Its strength lies in
enhancing students' practical innovation, teamwork,
and professional adaptability, making it particularly
suitable for the skill-oriented characteristics of higher
vocational education. Typical applications include:
interdisciplinary real-world problem-solving projects
(e.g., fault diagnosis systems combining mechanical
engineering and IT); professional scenario simulations
(e.g., emergency process optimization in nursing); and
school-enterprise collaborative research (translating
industry technical hurdles into student inquiry tasks).
However, during implementation in vocational

colleges, students often struggle due to weak theoretical
foundations and insufficient autonomy. Moreover,
IBL requires substantial faculty, equipment, and
personalized guidance. Crucially, evaluation standards
often fail to quantify the inquiry process, leaving
students without timely feedback and causing them
to fall into "blind confidence" or complete confusion.
Additionally, the flexibility of IBL may weaken
teaching outcomes in disciplines that emphasize strict
standardization.

The rapid development of Large Language Models
(LLMs) now allows for more personalized resource
filtering. Empowered by LLMs, agent systems can
parse students' semantic intentions, providing more
precise and rapid feedback compared to traditional IBL.
For instance, if a student describes a need to "extract

 Vol 1 Issue 1 202617 of 22

numbers from text and sum them," the system not
only generates code involving file reading and regular
expressions but also highlights critical nodes like try-
except exception handling. This real-time interaction
mechanism reconstructs the learning path, aligning the
cognitive load distribution with the skill acquisition
patterns in Anderson's ACT-R theory—where skill
formation follows the transition from declarative to
procedural knowledge [1]. The Action Plan for Quality
Improvement of Vocational Education (2020-2023)
also explicitly targets "deepening teaching model
reforms and promoting the deep integration of AI with
education."

In this context, the teaching methodology of the
Python language urgently requires reconstruction.
Although Python's nature as an interpreted language
allows for quick application, its dynamic typing
and indentation sensitivity pose significant learning
hurdles. Research shows that 42.6% of syntax errors
in traditional teaching stem from delayed feedback,
causing error patterns to solidify into cognitive biases.
Integrating LLM agents to correct errors in real-time
can prevent the formation of incorrect coding habits.

2. Current Status of Traditional IBL
Traditional IBL in vocational programming education
faces three structural contradictions. The foremost is
the gap between textbook content and engineering
practice. In Python Programming courses, cases
long focused on basic console operations, while
industry demand for API calls and structured data
processing exceeds 80%. Consequently, students
require an extra 3 weeks to bridge the skill gap
during internships. The second issue is inefficient
feedback. Research indicates the average cycle for
manual code grading is 52 hours, during which 60%
of students repeat erroneous practices over 8 times.
Finally, single-dimension evaluations exacerbate the
industry-education disconnect. Current systems focus
excessively on results, ignoring code specifications
and maintainability, leading 67% of students to adopt
hard-coding strategies that industry mentors label as
"lacking engineering value."

The introduction of LLM agents offers optimization.
For dynamic scenario adaptation, LLMs can parse
corporate codebases to generate real-time technical
cases, reducing internship adaptation periods from

3 weeks to 1.1 weeks and increasing structured data
training to 82%. Regarding feedback, integrated LLM
assistants can instantly locate logic errors (e.g., variable
scope conflicts), reducing error repetition rates from
7.9 to 1.2 times—a 4.3-fold increase in efficiency [2].
Furthermore, multi-dimensional evaluation systems
using LLMs integrate static analysis (e.g., Flake8) with
dynamic performance testing to quantify modularity
and algorithm efficiency, driving students to optimize
"brute force" strategies.

3. Reform Paths for the IBL Teaching
Model
3.1 LLM-Driven Agent Systems
Compared to traditional search engines, LLM agent
systems represent a breakthrough in information
retrieval. Utilizing deep learning architectures, these
systems process structured and unstructured data in
parallel, revealing latent correlations through feature
vector mapping. Their advantages are threefold:
first, semantic understanding modules can resolve
ambiguous queries (e.g., recommending specific
technical stacks for "beginner projects"); second, real-
time mechanisms monitor cognitive load, pushing
micro-lectures when error rates on specific knowledge
points exceed thresholds.

Empirical studies show these systems lower the
threshold for acquiring useful information. A controlled
experiment at UC Berkeley showed that students using
intelligent retrieval systems increased literature search
efficiency by 57%, with a resource matching accuracy
of 89%, compared to just 42% for traditional search
engines [3].

3.2 Curriculum Reconstruction Strategies
Project-driven teaching is a common method in IBL
to simulate industry requirements. In Python teaching,
LLMs can provide students with logic and solutions.
When students encounter difficulties, they can describe
problems in natural language—such as "How to
count word frequency in an article"—and the system
provides step-by-step solutions with critical warnings.
This breaks the time-space constraints of traditional
classrooms, providing a "omnipresent mentor."
More importantly, LLMs guide learners from simple
implementation to standardized practices, such as
adding exception handling to enhance stability, thereby
fostering engineering thinking.

Journal of Applied Linguistics and Communication Studies 18 of 22

Under LLM empowerment, traditional project-driven
models can be optimized:

(1) Challenging Tasks: Teachers can assign more
complex tasks rather than focusing only on simple
textbook functions.

(2) Autonomous Inquiry: Students can use LLMs to
explore advanced content independently, increasing
motivation.

(3) Iterative Optimization: Before submission,
students use LLMs to check code specifications. They
submit the AI’s optimization suggestions alongside
their code, providing teachers with rich data to adjust
teaching strategies [4].

3.3 Innovation in the Dual-Track Evaluation
Mechanism
In evaluation, LLMs can access local knowledge bases
to provide transparent and immediate feedback. Once
teachers organize comprehensive grading standards, the
LLM becomes an efficient assistant. Students receive
detailed reports—acting like a strict but fair examiner—
identifying issues like non-standard naming or code
redundancy. For example, the system might suggest:
"Use the 'with' statement to close files automatically
to prevent resource leaks," linked to a relevant tutorial
video. This allows students to complete multiple
optimization rounds before final submission.

Final grades consist of system scores and teacher
evaluations. Teachers can focus on innovation,
workload, and practical value, while LLMs handle
technical accuracy and specifications, preserving the
teacher's judgment space while ensuring objectivity.
Using this dual-track system, teachers can propose
high-freedom tasks, such as simulating a "Smart Home
Control System." While such tasks are difficult to
grade manually in traditional IBL due to their diverse
solutions, agents make them feasible. Teachers upload
grading rubrics as structured data to a local knowledge
base to prevent the LLM from using incorrect internet-
based standards. The agent handles objective aspects
like logic, syntax, and keyword usage. Students can
check and modify their code indefinitely before the
final deadline. Once the student is satisfied with the
system's score, the teacher performs a final review
of the project's complexity and technical extensions.
This allows every teacher to have a "24-hour teaching

assistant," achieving the goal of improving quality and
efficiency [5].

4. Summary and Outlook
This paper delineates the implementation path for
LLM-driven reform in Python courses at vocational
colleges. By building intelligent cognitive scaffolds,
reconstructing project-oriented curricula, and
establishing dual-track evaluation mechanisms, it
effectively addresses feedback delays, industry-
education gaps, and single-dimension evaluations.
LLM tools not only achieve instant diagnosis but
also recommend enterprise-level tasks via dynamic
knowledge graphs, strengthening students' engineering
mindsets.

Future research can extend in three directions:
(1) Exploring the deep integration of LLMs with

Online Judge (OJ) systems to build personalized
learning paths via error pattern analysis.

(2) Developing cross-curricular knowledge graphs to
facilitate interdisciplinary connections.

(3) Establishing alliances among vocational colleges
to share pedagogical analysis models under data
security protocols, promoting the universal application
of intelligent educational technologies.

References
[1]	 Wu Yunchao, et al. Cognitive Spaced Repetition

Learning Method Based on ACT-R [J]. Journal of
East China University of Science and Technology
(Natural Science Edition), 2024 (1-10).

[2]	 Simon Goorney, et al. A framework for curriculum
transformation in quantum information science
and technology education [J]. European Journal of
Physics, 2024 (45).

[3]	 Alvarez-Gonzalez L A, et al. Using LAMS to
support engineering student learning: Two case
studies [J]. IEEE, 2017.

[4]	 Zhu, Y, et al. Impact of assignment completion
assisted by Large Language Model-based chatbot
on middle school students’ learning [J]. Educ Inf
Technol 30, 2025.

[5]	 Mek te rov ić I , e t a l . Sca l ing Automated
Programming Assessment Systems [J]. Electronics,
2023, 12(4).

