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Abstract: With the rapid iteration of Large Language Models (LLMs), their applications have permeated 
various fields, demonstrating significant value in higher vocational education. Research indicates that the 
traditional Inquiry-Based Learning (IBL) model faces challenges such as feedback latency, disconnection 
between industry and education, and homogenized evaluation dimensions. Taking the Python language 
course as an example, this paper analyzes the current limitations of the IBL model. It explores a path to refine 
traditional IBL in terms of course content and evaluation systems by integrating LLM-based agents. The study 
aims to provide a novel approach for higher vocational education to enhance the quality of instructional content.
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1. Research Background

Inquiry-Based Learning (IBL) is a student-centered 
instructional model that emphasizes knowledge 
construction through active exploration, problem-

solving, and critical thinking. Its strength lies in 
enhancing students' practical innovation, teamwork, 
and professional adaptability, making it particularly 
suitable for the skill-oriented characteristics of higher 
vocational education. Typical applications include: 
interdisciplinary real-world problem-solving projects 
(e.g., fault diagnosis systems combining mechanical 
engineering and IT); professional scenario simulations 
(e.g., emergency process optimization in nursing); and 
school-enterprise collaborative research (translating 
industry technical hurdles into student inquiry tasks). 
However, during implementation in vocational 

colleges, students often struggle due to weak theoretical 
foundations and insufficient autonomy. Moreover, 
IBL requires substantial faculty, equipment, and 
personalized guidance. Crucially, evaluation standards 
often fail to quantify the inquiry process, leaving 
students without timely feedback and causing them 
to fall into "blind confidence" or complete confusion. 
Additionally, the flexibility of IBL may weaken 
teaching outcomes in disciplines that emphasize strict 
standardization.

The rapid development of Large Language Models 
(LLMs) now allows for more personalized resource 
filtering. Empowered by LLMs, agent systems can 
parse students' semantic intentions, providing more 
precise and rapid feedback compared to traditional IBL. 
For instance, if a student describes a need to "extract 
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numbers from text and sum them," the system not 
only generates code involving file reading and regular 
expressions but also highlights critical nodes like try-
except exception handling. This real-time interaction 
mechanism reconstructs the learning path, aligning the 
cognitive load distribution with the skill acquisition 
patterns in Anderson's ACT-R theory—where skill 
formation follows the transition from declarative to 
procedural knowledge [1]. The Action Plan for Quality 
Improvement of Vocational Education (2020-2023) 
also explicitly targets "deepening teaching model 
reforms and promoting the deep integration of AI with 
education."

In this context, the teaching methodology of the 
Python language urgently requires reconstruction. 
Although Python's nature as an interpreted language 
allows for quick application, its dynamic typing 
and indentation sensitivity pose significant learning 
hurdles. Research shows that 42.6% of syntax errors 
in traditional teaching stem from delayed feedback, 
causing error patterns to solidify into cognitive biases. 
Integrating LLM agents to correct errors in real-time 
can prevent the formation of incorrect coding habits.

2. Current Status of Traditional IBL
Traditional IBL in vocational programming education 
faces three structural contradictions. The foremost is 
the gap between textbook content and engineering 
practice. In Python Programming courses, cases 
long focused on basic console operations, while 
industry demand for API calls and structured data 
processing exceeds 80%. Consequently, students 
require an extra 3 weeks to bridge the skill gap 
during internships. The second issue is inefficient 
feedback. Research indicates the average cycle for 
manual code grading is 52 hours, during which 60% 
of students repeat erroneous practices over 8 times. 
Finally, single-dimension evaluations exacerbate the 
industry-education disconnect. Current systems focus 
excessively on results, ignoring code specifications 
and maintainability, leading 67% of students to adopt 
hard-coding strategies that industry mentors label as 
"lacking engineering value."

The introduction of LLM agents offers optimization. 
For dynamic scenario adaptation, LLMs can parse 
corporate codebases to generate real-time technical 
cases, reducing internship adaptation periods from 

3 weeks to 1.1 weeks and increasing structured data 
training to 82%. Regarding feedback, integrated LLM 
assistants can instantly locate logic errors (e.g., variable 
scope conflicts), reducing error repetition rates from 
7.9 to 1.2 times—a 4.3-fold increase in efficiency [2]. 
Furthermore, multi-dimensional evaluation systems 
using LLMs integrate static analysis (e.g., Flake8) with 
dynamic performance testing to quantify modularity 
and algorithm efficiency, driving students to optimize 
"brute force" strategies.

3. Reform Paths for the IBL Teaching 
Model
3.1 LLM-Driven Agent Systems
Compared to traditional search engines, LLM agent 
systems represent a breakthrough in information 
retrieval. Utilizing deep learning architectures, these 
systems process structured and unstructured data in 
parallel, revealing latent correlations through feature 
vector mapping. Their advantages are threefold: 
first, semantic understanding modules can resolve 
ambiguous queries (e.g., recommending specific 
technical stacks for "beginner projects"); second, real-
time mechanisms monitor cognitive load, pushing 
micro-lectures when error rates on specific knowledge 
points exceed thresholds.

Empirical studies show these systems lower the 
threshold for acquiring useful information. A controlled 
experiment at UC Berkeley showed that students using 
intelligent retrieval systems increased literature search 
efficiency by 57%, with a resource matching accuracy 
of 89%, compared to just 42% for traditional search 
engines [3].

3.2 Curriculum Reconstruction Strategies
Project-driven teaching is a common method in IBL 
to simulate industry requirements. In Python teaching, 
LLMs can provide students with logic and solutions. 
When students encounter difficulties, they can describe 
problems in natural language—such as "How to 
count word frequency in an article"—and the system 
provides step-by-step solutions with critical warnings. 
This breaks the time-space constraints of traditional 
classrooms, providing a "omnipresent mentor." 
More importantly, LLMs guide learners from simple 
implementation to standardized practices, such as 
adding exception handling to enhance stability, thereby 
fostering engineering thinking.
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Under LLM empowerment, traditional project-driven 
models can be optimized:

(1) Challenging Tasks: Teachers can assign more 
complex tasks rather than focusing only on simple 
textbook functions.

(2) Autonomous Inquiry: Students can use LLMs to 
explore advanced content independently, increasing 
motivation.

(3) Iterative Optimization: Before submission, 
students use LLMs to check code specifications. They 
submit the AI’s optimization suggestions alongside 
their code, providing teachers with rich data to adjust 
teaching strategies [4].

3.3 Innovation in the Dual-Track Evaluation 
Mechanism
In evaluation, LLMs can access local knowledge bases 
to provide transparent and immediate feedback. Once 
teachers organize comprehensive grading standards, the 
LLM becomes an efficient assistant. Students receive 
detailed reports—acting like a strict but fair examiner—
identifying issues like non-standard naming or code 
redundancy. For example, the system might suggest: 
"Use the 'with' statement to close files automatically 
to prevent resource leaks," linked to a relevant tutorial 
video. This allows students to complete multiple 
optimization rounds before final submission.

Final grades consist of system scores and teacher 
evaluations. Teachers can focus on innovation, 
workload, and practical value, while LLMs handle 
technical accuracy and specifications, preserving the 
teacher's judgment space while ensuring objectivity. 
Using this dual-track system, teachers can propose 
high-freedom tasks, such as simulating a "Smart Home 
Control System." While such tasks are difficult to 
grade manually in traditional IBL due to their diverse 
solutions, agents make them feasible. Teachers upload 
grading rubrics as structured data to a local knowledge 
base to prevent the LLM from using incorrect internet-
based standards. The agent handles objective aspects 
like logic, syntax, and keyword usage. Students can 
check and modify their code indefinitely before the 
final deadline. Once the student is satisfied with the 
system's score, the teacher performs a final review 
of the project's complexity and technical extensions. 
This allows every teacher to have a "24-hour teaching 

assistant," achieving the goal of improving quality and 
efficiency [5].

4. Summary and Outlook
This paper delineates the implementation path for 
LLM-driven reform in Python courses at vocational 
colleges. By building intelligent cognitive scaffolds, 
reconstructing project-oriented curricula,  and 
establishing dual-track evaluation mechanisms, it 
effectively addresses feedback delays, industry-
education gaps, and single-dimension evaluations. 
LLM tools not only achieve instant diagnosis but 
also recommend enterprise-level tasks via dynamic 
knowledge graphs, strengthening students' engineering 
mindsets.

Future research can extend in three directions:
(1) Exploring the deep integration of LLMs with 

Online Judge (OJ) systems to build personalized 
learning paths via error pattern analysis.

(2) Developing cross-curricular knowledge graphs to 
facilitate interdisciplinary connections.

(3) Establishing alliances among vocational colleges 
to share pedagogical analysis models under data 
security protocols, promoting the universal application 
of intelligent educational technologies.
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