基于陀螺寻北的有线随钻测量系统的研发

栗宗明 刘 盈 史 姗 梁梓辰 庞妍妍 陕西太合智能钻探有限公司 陕西 西安 712000

摘 要:为了提高煤矿用随钻测量系统的精度,将微型陀螺仪集成至有线随钻测量系统中,用地球转速解算方位 角,该论文主要介绍了微型陀螺有线随钻测量的原理、构成、算法,并且对该仪器和传统随钻测量仪器在无磁环境下 进行对比,发现二者的实验结果较为接近,由此验证了陀螺寻北随钻测量系统的可靠性,在新疆某现场实测中发现传 统仪器在有磁场干扰情况下误差较大,而陀螺寻北误差较小,由此得出陀螺寻北随钻测量系统在磁场干扰较大时应用 效果较好。

关键词: 微型陀螺; 陀螺寻北; 有线随钻; 测量系统

引言:随钻测量系统利用惯性导航测量原理测量倾 角、方位角和工具面角,其中倾角和工具面角主要由三 轴加速度计在静止状态下测量的数据来解算,具有很高 的准确性和可靠性;方位角主要由三轴磁强计测量值确 定^[1],但磁强计测量过程会受到其他钢铁设备、地球磁偏 角的影响,使得方位角测量精度较低,而且方位角的测 量需要不定期进行传感器的标定。随着微机电系统的发 展,微型陀螺仪已被广泛应用,微型陀螺仪和加速度计 组合的惯性测斜仪因其对温度适应性强和长时间稳定性 高的特点,越来越多地应用于小口径水平井中,因此, 选择一种高精度硅基模块来执行井内陀螺仪测量,并以 其小体积、小质量的特点,进一步将其集成至煤矿用随 钻测量系统中。

1 陀螺寻北随钻测量原理

组成陀螺寻北系统最核心的部件是陀螺仪,微型陀 螺仪由三个单轴传感器组成,分别代表横滚轴、俯仰轴 和航向轴,传感器之间相互正交,可以测量投射到轴的 三个分量上的角速度矢量。寻北原理是通过陀螺寻北敏 感到地球自转角速度投影到水平方向上的分量,再结合 寻北方案所对应的算法,求出敏感轴和实际方向之间的 夹角,该夹角的值即为北向值^[2]。高精度微型陀螺仪具有 以下优点:对方位角测量过程不受异常磁场影响,提升 方位角的测量精度和鲁棒性;在实际工程应用中,亦可 以省去定期对随钻测量系统中的传感器进行无磁标定的 步骤,节约后期维护成本;系统无需使用无磁材料进行 加工和防护。

2 系统整体结构

本方案对随钻测量系统中孔内测量系统的软硬件进 行设计,其整体的设计特点如下:探管测量系统能够保 持对当前产品的有线通信系统、上位机系统的兼容性; 探管测量系统具有两套IMU测量单元,提升产品的可扩 展性和可靠性:一套由高精度陀螺仪和加速度计组成的 高精度IMU;另一套由常规精度陀螺仪、加速度计与磁 强计构成的常规航姿参考系统。

2.1 主控模块

主控模块主要由单片机(MCU)、通信接口、 晶振、外围电路、片上程序等组成。本方案拟采用 STM32F446RET6作为MCU,具有低功耗、尺寸小、内置 专用浮点数运算单元等优点,能够高效地采集并实时处 理通信数据和各个传感器测量数据。

2.2 测量单元及算法

高精度惯性测量单元(IMU)拟由高精度三轴陀螺 仪(XDR330)和三轴加速度计(XDA1201V)组成。 在静止状态下,三轴陀螺仪可以通过测量微小的地球转 速,间接地解算出探管的方位角信息,相比于常规的依 赖三轴磁强计对方位角的解算方案,能够有效地避免异 常磁场对解算过程的干扰,提高方位角的解算精度。探 管的倾角和工具面角可以通过使用扩展卡尔曼滤波器 融合三轴加速度计和三轴陀螺仪的测量信息得到^[3],算法 如下。

定义组合导航系统开始工作时所处的位置为导航坐标系的原点,其*x*,轴指向北方向,*y*,轴指向南方向,*z*,轴指向正下方;另定义高精度惯性测量单元的中心为机体坐标系的原点,其*x*,轴指向机体的前方,*y*,轴指向机体的右方,*z*,轴指向机体的下方^[2]。本方案设计了基于EKF^[4]的姿态解算算法,其状态方程可以表示为:

$\mathbf{x}(t) = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{w}(t)$

其中,误差状态向量的定义为 $\mathbf{x}(t) = [\delta \mathbf{r}_{3\times 1} \delta \mathbf{v}_{3\times 1} \delta \phi_{3\times 1}$

 $\delta \epsilon_{3\times 1} \delta b_{3\times 1}]^{T}$,向量中各个子向量的定义如下: 位置误差向量: $\delta \mathbf{r} = [\Delta r_N \ \Delta r_E \ \Delta r_D]^{T}$ 速度误差向量: $\delta \mathbf{v} = [\Delta v_N \ \Delta v_E \ \Delta v_D]^{T}$ 姿态角误差向量: $\delta \phi = [\Delta \phi_N \ \Delta \phi_E \ \Delta \phi_D]^{T}$ 陀螺仪零偏误差向量: $\delta \epsilon = [\delta \epsilon_N \ \delta \epsilon_E \ \delta \epsilon_D]^{T}$ 加速度计零偏误差向量: $\delta \mathbf{b} = [\delta b_N \ \delta b_E \ \delta b_D]^{T}$ 为方便计算,状态方程可以被离散化表示为

 $\mathbf{x}_{k+1} = (\mathbf{I} + \mathbf{F}T)\mathbf{x}_k + \mathbf{G}T\mathbf{w}_k = \Phi_k \mathbf{x}_k + \Gamma_k \mathbf{w}_k$ 其中*T*表示采样时间间隔。

EKF模型的测量方程为:

$$\mathbf{z}_{k+1} = \mathbf{H}_{k+1}\mathbf{x}_{k+1} + \mathbf{v}_{k+1}$$

其中, \mathbf{z}_{k+1} 是测量向量, \mathbf{H}_{k+1} 是测量矩阵, \mathbf{V}_{k+1} 是服 从零均值高斯白噪声模型的测量噪声向量,其协方差为 $\mathbf{R}_{k+1\circ}$ 在本方案中,随钻测量系统仅在静止状态下进行姿态的估计,与其相对应的测量方程为:

 $\mathbf{z}_{k+1}^{INS, GNSS} = [\mathbf{I}_{6\times 6}\mathbf{0}_{6\times 9}] \mathbf{x}_{k+1} + \mathbf{v}_{k+1}^{INS, GNSS}$

EKF的计算有两个子过程,分别为时间更新和测量更新^[5],在时间更新过程中,滤波器根据k时刻的状态估计值 $\hat{\mathbf{x}}_{k}$ 预测k+1时刻的状态估计值 $\check{\mathbf{x}}_{k+1}$,并计算预测值的均方误差 \mathbf{P}_{k+1k} 对预测的质量优劣进行定量描述,具体计算公式如下:

$$\mathbf{\breve{x}}_{k+1} = \mathbf{\Phi}_k \, \mathbf{\widehat{x}}_k$$

 $\mathbf{P}_{k+1/k} = \Phi_k \mathbf{P}_k \Phi_k^T + \Gamma_k \mathbf{Q}_k \Gamma_k^T$

其中Q_k是过程噪声的协方差协矩阵。

在寻北算法中,设载体的方位角为α、横滚角为β、 俯仰角为γ,则地理坐标系与载体坐标系的转换矩阵可以 表示为:

	$\cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma$	$\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma$	$-\cos\beta\sin\gamma$
$C_n^b =$	$-\sin \alpha \cos \beta$	$\cos \alpha \cos \beta$	$\sin \beta$
	$\langle \cos \alpha \sin \gamma \rangle$	$\sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma$	$\cos\beta\cos\gamma$

在地理坐标系中地球自转角速率的分量为 (0 cosφ ω_esinφ),其中φ表示纬度, φ表示经度,经地理坐标系与载体坐标系的转换矩阵变换后,在载体坐标系中地球自转角速率可以表示为:

$$\begin{pmatrix} \omega_{\chi} \\ \omega_{y} \\ \omega_{z} \end{pmatrix} = C_{n}^{b} \begin{pmatrix} 0 \\ \omega_{e} \cos\varphi \\ \omega_{e} \sin\phi \end{pmatrix}$$

此时, 陀螺输出为:

 $\omega_x = \omega_e \cos \varphi(\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma) - \omega_e \sin \phi \cos \beta \sin \gamma + \varepsilon_x$ 其中, ε_x 表示零均值高斯白噪声。

在实际测量中,需优先计算横滚角β和俯仰角γ,根据 上式在已知纬度的情况下,便可进一步求解得到方位角。

2.3 防水隔震封装

在随钻测量系统在井下工作时,钻杆空腔内会充满 水,而测量单元会一直位于钻杆空腔内,随钻机的钻进 运动而运动。为避免孔内测量系统遇水或遇强震损坏, 本方案针对孔内测量系统设计了防水封装和隔震装置:

(1)防水封装:防水封装使用电子灌封胶实现,电
子灌封胶具有密封、绝缘、防水防潮、防尘防腐、耐高
温200℃、低温-50℃等特点,可以有效保护电路板和电子
元器件。

(2)隔震装置:在实际工作中,由于钻杆运动较激 烈,而且在退钻时,钻杆之间可能会出现丝扣过紧的现象,所以对原有的机械结构进行改进实现减震功能。

3 实验结果及实测数据分析

该微型陀螺仪是由半导体硅制成,其加工过程和材 质的选择都会对最终产品带来一定的误差,外部环境也 会影响陀螺仪的输出信号。为了验证陀螺寻北有线随钻 测量系统的准确性,在实验室无磁环境下对传统仪器和 陀螺寻北测量系统进行试验对比,结果如表1。

孔深	倾角		真方位			
	传统仪器实验值	陀螺寻北实验值	误差	传统仪器实验值	陀螺寻北实验值	误差
30	19.86	19.74	0.12	158.47	159.42	0.95
60	21.12	20.81	0.31	160.09	161.53	1.44
90	21.87	22.28	0.41	161.55	163.17	1.62

表1 无磁环境下对比

由以上实验对比可得出在无磁环境下,传统仪器和 陀螺寻北测量数据倾角误差不超过1°,真方位误差不超过 2°,传统有线随钻测量系统在前期应用中已经被验证可靠 性较高,由此也验证了陀螺寻北随钻测量系统的可靠性。

将陀螺寻北系统应用于新疆某施工现场,对传统仪 器和陀螺寻北测量的数据对比。

工程技术创新与发展・2023 第1卷 第6期

孔深	倾角		真方位			
	传统仪器实测值	陀螺寻北实测值	误差	传统仪器实测值	陀螺寻北实测值	误差
30	19.26	19.74	0.48	136.63	159.42	22.79
60	21.54	20.81	0.73	179.23	161.53	-17.7
90	22.67	22.28	0.39	185.6	163.17	-22.43

表2 现场试验对比

由以上实测数据对比可得出,传统仪器和陀螺寻北 测量数据倾角误差不超过2°,真方位误差较大,最大误差 达到了22°,是由于传统仪器数据受地磁干扰较大,故误 差大,而陀螺寻北测得的数据较为准确。

结束语

将微型陀螺仪集成至有线随钻测量系统中提高煤矿 用随钻测量系统的精度,在无磁环境中发现该新仪器和 传统随钻测量仪器二者测量结果误差较小,由此验证了 陀螺寻北随钻测量系统的可靠性,在新疆某现场实测中 发现传统仪器在有磁场干扰情况下误差较大,而陀螺寻 北测量系统误差较小,由此得出陀螺寻北随钻测量系统 在磁场干扰较大时应用效果较好。

参考文献

[1]燕斌.煤矿井下矿用本安型钻机开孔定向仪的研制

[J].仪表技术与传感器,2021(05):63-66.

[2]勾继民.便携式高精度寻北仪关键技术研究[D].河 北科技大学,2022.

[3]Xavier C ,Solen L ,Eddy C . On-shaft ball bearings monitoring by using an inertial measurement unit (IMU) under stationary conditions[J]. Measurement Science and Technology,2023,34(10).

[4]康厚清.小体积随钻存储测斜仪的设计及校准方法 [J].矿业安全与环保,2018,45(04):54-58.

[5]宗意凯,苏淑靖,高瑜宏.基于多源IMU和粒子滤波优化的姿态融合算法[J].仪表技术与传感器,2023(08):88-95.