储能技术在光伏发电系统中的应用

王晓杰 魏晓东 内蒙古龙源新能源发展有限公司 内蒙古 巴彦淖尔 014400

摘 要:随着全球能源结构的转型和可再生能源的大力发展,光伏发电系统因其清洁、可再生的特性,正逐渐成为能源领域的研究热点。但是,受天气、季节等多方面因素影响,光伏发电还存在着输出不稳定、技术成本高等问题,这在一定程度上限制了其的大规模应用。储能技术的出现为解决这一问题提供了可能。储能技术能够有效地存储和释放能量,提高系统的供电质量和稳定性。基于此,本文就光伏发电系统中,储能技术的应用相关问题展开了探究,希望能够为相关人士提供一定的借鉴,促进我国能源产业的可持续发展。

关键词:储能技术;光伏发电;系统应用

前言

由于能源的快速发展和消耗,使得人类对能源的需求量不断增加,光伏发电具有环保、清洁、经济、安全等优点,在实际生活中得到了广泛应用^[11]。光伏发电系统通过太阳能电池组件将光能转化为电能,然后经过并网逆变器将电能转化为交流电进行输送,之后通过输电线路输送至用户端,满足人们的日常用电需求。作为光伏发电系统的重要组成部分,储能单元能够保证系统的稳定、安全运行。

1 储能技术

1.1 机械储能

机械储能是指将电能转换为机械能存储,在需要使用时再重新转换为电能的一种储能方式。该技术主要应用的有抽水蓄能和飞轮储能两种类型:抽水储能是指使用具有不同水位的两个水库,用电低谷时,系统将下位水库中的水抽入上位水库,用电高峰时,利用反向水流发电,满足用电需求^[2]。飞轮储能系统以飞轮本体高速旋转的形式存储动能,并通过与飞轮本体同轴的电动发电机完成动能与电能之间的转换(如图1)。

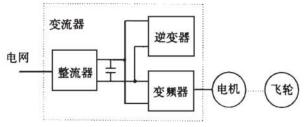


图1 飞轮系统中的能量转换

该储能方式的响应速度较快,可以控制在毫秒内, 适用于电网的瞬时调频。同时,由于现代飞轮系统在真 空环境中使用了磁悬浮技术来减少摩擦,所以这一储能方式的效率也很高。并且飞轮储能系统支持大量的充放电循环,整体寿命较长,但其能量密度有限,不适用于长时间的储能,且安全性较差,需要采取一定的设计和隔离措施,以保证飞轮在高速旋转时的安全。

1.2 化学储能

化学储能是指通过化学反应将能量转化为化学键的形式,以便在需要时可以释放出来的一种储能方式。常见的有锂电池和钠硫电池两种:锂电池普遍具有很高的能量密度,适用于小型电池应用。通过合理的使用与科学的维护,锂电池可以使用很长时间,并可以进行大量的充放电循环。此外,与其他电池技术相比,锂电池的充电率更快,对环境的影响也小;钠硫电池同样具有较高的能量密度,但因其特性影响,更适用于大型电力储存项目。在300℃-350℃的高温环境下使用钠硫电池,需要进行持续的热管理^[3]。

1.3 电磁储能

电磁储能技术指将电能转化为磁能进行储存,并在需要时,通过改变共振频率,使磁振子发生位移,将储存的磁能转化为电能^[4]。一般通过超级电容和超导磁储能两种方式来实现:超级电容能够实现快速充放电,具体可控制到几秒甚至几毫秒内,并且具备较高的功率密度和较低的能量密度,适用于大量瞬时功率的应用,同时使用寿命也比较长,不会受化学反应退化影响,不需要进行特意维护;超导磁储能几乎无能量损耗,并且能够将电力提供响应时间控制在毫秒级别,整体功率密度较高,适用于电网瞬时调频,但其能量密度有限,因此总体储能量受限(如图2)。

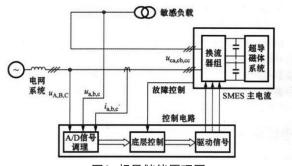


图2 超导储能原理图

2 光伏发电系统储能问题

2.1 储能技术的类型和选择

目前,用于光伏发电系统的储能技术主要有电池储能、压缩空气储能、水泵储能以及热能储存几种。其中,应用最为广泛的是电池储能,比如锂离子电池、钠硫电池等,这一储能方式不但不能效率高而且响应速度也很快。而压缩空气储能和水泵储能虽然在特定环境中具备一定的应用优势,但需要对设施和基础设施投资进行更多的考虑^[5]。在进行储能技术选择时,还需从系统需求、成本效益以及可靠性等多方面因素进行考虑。

2.2 储能系统经济性

随着储能技术的的不断发展与相关研究的深入,电 池储能系统的成本已经得到了明显的降低,这就使得其 在实际应用中的竞争力有所提升。但与此同时,对于储 能系统的安装、维护和运营仍然需要一定的投资成本, 尤其是在一些需要大规模应用的时候,需要考虑其长期 的经济收益以及投资回收周期。

2.3 系统程序复杂

由于光伏发电系统的设计较为复杂,且各区域的电力系统架构也各不相同,加之一些技术人员的专业水平和对能源消耗的认识不足,导致了储能单元在负荷高时极易发生故障问题(如图3)。

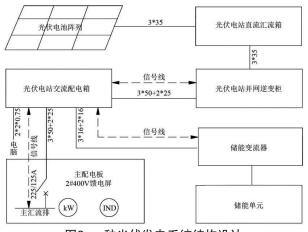


图3 一种光伏发电系统结构设计

在具体使用过程中,电池极易发生电荷迁移、漏电等问题,有些器件自身的绝缘层很薄,极易产生看不见的缺陷风险。另外,由于光伏发电系统需要耦合大量信息,因而难免会在分析数据的过程中产生偏差。

3 储能技术在光伏发电系统中的应用

3.1 电力调峰

所谓的电力调峰,其基本运行目标就是在用电高峰期间,当电网负载比较大时,可以最大程度地满足家庭和企业的用电需要,同时对用电进行适当的调节,从而可以有效地减少电网负荷的压力。电网中存储设备本身具备足够的灵活性,当电网的电力负载比较小的时候,可以先将光伏发电系统在实际运行过程中所生成的电能储存起来,之后再在负荷高峰期将其释放出来,这种工作模式可以极大地提高电网电力供应的可靠性,进而确保电网的正常运行,防止由于电力消耗过大而造成的电网运行故障,只有确保电力供应的稳定性,才能切实地满足区域内的用电需要。

3.2 负荷转移

在光伏发电系统中应用储能技术时,负荷转移技术 的运行原理与电力调峰技术存在着很大的相似性,并 且,相比之下,负荷转移技术的灵活性要比电力调峰技 术高一些。在负载的低峰期,若在光伏发电系统实际电 力生产过程中出现过剩的电力,那么就可以依据实际情 况将过剩的电力存储起来,从而降低能源的不必要损 耗。但在用电峰值期间,随着电力需求量的增大,光伏 发电系统在运行中产生的电量难以达到实际的要求,这 时,该储能装置可以将先前存储的剩余电力全部释放出 来,从而确保电力供应的稳定性。通过光伏发电系统与 储能系统的协同工作,可以降低在高功率负荷运行期 间,由于用电需求差异而调节发电量,对系统造成的影 响,从而可以最大限度地降低高峰期对电力的需求量, 在确保用户用电需求的前提下, 节省用户的电费开支, 这样既能确保电力系统本身的经济效益, 又能在某种程 度上为客户的用电要求提供保障。

3.3 光伏并网

虽然传统的光伏并网发电系统所需的储能技术相对简单,但其功率运行的稳定性较差。针对这一问题,可以使用复合技术,实现技术升级,确保当前并网系统应用效率的切实提升。在我国的电力系统中,复合储能型光伏并网系统得到了大量的运用,许多企业在构建复合储能型光伏电网时,采用了超级电容器加蓄电池的组合模式,通过一定的蓄能来确保在系统运行过程中,能够有效地减少网流中谐波的含量,从而提高电网的供电

可靠性。此外,该系统还可以安装其它的电子元件,如 变转器、光伏阵列等,充分发挥超级容器与储能装置的 优势互补,保证在运行中能够有效地解决功率波动的问 题,并且能够对电网中的电流波质量进行调节与优化, 从而保证了该技术的综合使用效果。并且,通过增强光 伏并网发电系统的可调度性,还能减少外部因素对光伏 并网发电系统的影响,从而大幅增强光伏并网发电系统 的使用可靠性。

3.4 电能质量控制

在光伏并网发电系统的运行过程中, 为了实现对电 网的电能质量的有效调控,需要采用合适的储能技术, 并通过对其的适当应用, 使光伏并网发电系统在运行中 的效能可以达到最佳的状态。在此期间,技术人员一般 会采取一系列的有效措施, 以实现对光伏并网的有效控 制,并且对于光伏并网发电系统在运行期间所产生的电 能质量,也能进行一定的控制与稳定。在此过程中,储 能控制系统起到了关键的作用,既可以调节有源滤波, 又可以实现电压的平稳, 使得相角能够一直处于一个比 较合理的区间,并且当相角产生偏差时,可以立即对其 进行调节,确保电网的发电质量。过去,在对电网的电 能质量进行管理控制的时候,大部分都是通过人工方式 来实现的,这样就存在着许多细微的问题难以被及时地 检测出来,从而造成了供电质量的下降。特别是在用电 高峰和低谷时期,尽管可以人为地调整供电功率,但难 以确保这种调整的精确性。而将储能技术运用到电网电 能质量控制工作之中,可以对以上问题进行很好的处 理,这种运行模式可以有效地防止在具体运行过程中, 因短期内对电力供应量进行大幅调节而对电网本身产生 的影响。

4 储能技术在光伏发电系统中的应用发展趋势

随着现代科技的进步以及相关研究的深入,储能系统的性能、效率和成本也得到了不断的改善:一方面,固态电池、钠硫电池,以及液态金属电池等新兴技术大量涌现,这类新兴技术具有更高的能量密度、更长的

使用寿命以及更低的成本,未来有望取代传统的锂离子电池,具有很大的应用发展潜力。另一方面,通过与风能、水能等其他可再生能源的结合使用,能够形成多能联供系统,提高能源整体利用效率和稳定性。此外,通过对人工智能、大数据分析等技术的科学运用,能够对储能系统进行智能监控、预测和优化控制,进而提高系统的响应速度和运行效率,降低运营成本。

未来,在储能技术的具体应用与发展过程中,政府单位还应持续就技术的实际发展与应用状况,出台关于支持可再生能源和储能技术发展的政策法规,如补贴政策、税收优惠等,促进储能技术在光伏系统中的进一步应用和深化发展。

结束语:综上所述,在光伏发电系统中应用储能技术,不但可以有效地提高电力系统在运行中的稳定性与安全性,也可以最大限度地发挥其本身在运行中的经济效益,保障人们正常的用电需求。但是,就当前实际情况来看,尽管关于储能技术的研究已取得了一定进展,并与过去相比有了很大的提升,但是,研究人员仍需展开进一步的研究,寻求更为高效的储能设备,使得光伏并网发电相关技术得到更高水平的发展,使得其应用领域得以拓展,使得光伏并网发电技术可以惠及更多的民众,实现电力行业的绿色、环保、可持续发展。

参考文献

[1]武慧敏.电网光伏系统中储能技术的应用研究[J].光源与照明,2023,(12):108-110.

[2]马青梅.储能技术在光伏电站并网中的应用研究[J]. 光源与照明,2023,(12):111-113.

[3]陈楷文.储能技术在光伏发电系统中的应用[J].光源与照明,2023,(12):105-107.

[4]丁海忠,贺中华.新能源光伏发电技术的应用探析 [J].中国设备工程,2023,(S2):123-125.

[5]时智勇.聚焦储能技术应用本质服务新能源高质量发展[J].中国电力企业管理,2023,(34):20-22.