电气仪表安装及施工过程中应注意的问题分析

陈素玲 广西柳工元象科技有限公司 广西 柳州 545000

摘要:本文分析了电气仪表安装及施工过程中应注意的问题。包括技术要点如选择合适安装位置、确保安装环境符合要求、正确连接电源和信号线以及接地与屏蔽等。阐述了安装原则的安全性、可靠性、经济性和可维护性。针对常见问题如安装位置不当、环境条件不达标、电源和信号线连接问题、接地与屏蔽问题提出了具体解决方案。

关键词: 电气仪表; 安装施工; 注意事项; 问题分析

引言

随着工业自动化的不断发展,电气仪表在各个领域的应用日益广泛。电气仪表的准确安装及施工是其正常运行的关键,然而在实际操作中,往往会面临诸多问题。安装位置的选择、环境条件的达标、电源和信号线的连接以及接地与屏蔽等方面的问题,都可能影响仪表的性能和使用寿命,甚至危及生产安全。

1 电气仪表安装的技术要点

1.1 选择合适的安装位置

选择合适安装位置是电气仪表安装的首要步骤。需综合考虑使用环境与功能要求,确保仪表正常工作与便于维护。要考虑环境温度和湿度,避免高温、高湿或低温影响仪表性能,如高温致元件过热、高湿使电路板腐蚀。还应考虑防尘、防水和防腐,尤其在户外或有粉尘、水汽环境,采取措施可延长仪表寿命、降低维护成本。同时避免安装在振动和冲击大的位置,防止内部元件松动或损坏。此外,要确保有足够通风和散热条件,防止仪表过热,提高工作稳定性和可靠性。

1.2 确保安装环境符合要求

安装环境的条件直接影响到电气仪表的性能和寿命。因此,安装前应仔细检查和准备安装环境,确保其符合以下要求: (1)温度和湿度:仪表的安装环境应保持在规定的温度和湿度范围内,通常为0-40°C,相对湿度不超过85%。超出这个范围可能会导致仪表性能下降或故障。(2)磁场干扰:避免将仪表安装在强电磁干扰的环境中,以免影响仪表的正常工作。磁场干扰可能导致仪表读数不准确或信号传输中断。(3)机械振动:安装位置应远离振动源,减少机械振动对仪表的影响。机械振动可能导致仪表内部元件松动、虚焊或损坏,影响其精度和寿命。(4)清洁度:保持安装环境的清洁,避免高灰尘和杂物进入仪表内部。灰尘和杂物可能导致仪表内部电路短路或接触不良,影响其正常工作[1]。

1.3 正确连接电源和信号线

正确连接电源和信号线对电气仪表正常工作至关重要。电源连接要确保电压和频率符合仪表要求,用合适电缆和接头,防接触不良和短路。信号线选屏蔽电缆且接地,减少电磁干扰,长度尽量短以减信号衰减。接线端子要牢固,避免松动脱落,接线前检查有无损坏腐蚀。所有电源线和信号线应有清晰标记和标识,便于识别维护,降低误操作风险,提高维护效率。可靠的连接确保仪表正常工作、数据准确可靠及使用安全。

1.4 接地与屏蔽

接地和屏蔽是电气仪表安装中不可忽视的重要环节,它们可以有效减少电磁干扰,提高仪表的稳定性和可靠性。(1)接地:仪表的外壳和金属部分应可靠接地,接地电阻应小于4Ω。接地线应选用截面积足够的铜导线,确保良好的导电性能。良好的接地可以有效减少电磁干扰,提高仪表的抗干扰能力。(2)屏蔽:信号线应使用屏蔽电缆,屏蔽层应可靠接地。对于多芯电缆,每根芯线的屏蔽层应分别接地,以减少相互干扰。屏蔽措施可以有效保护信号线免受外部电磁干扰的影响,确保信号传输的稳定性和准确性。

2 电气仪表安装的原则

(1)安全性原则。进行电气连接前先切断电源,防止触电事故;安装环境配备灭火器等消防设备,预防火灾;设置明显警示标志,提醒他人注意安装区域危险性,减少意外发生。(2)可靠性原则。选用高质量电缆、接头和连接件,确保连接可靠耐用,提高仪表连接质量和使用寿命;制定定期维护计划,及时发现并处理潜在问题,保证仪表长期稳定运行;安装完成后进行校准和测试,验证仪表准确性和可靠性;建立故障诊断机制,快速定位解决故障,减少停机时间和生产中断。(3)经济性原则在保证安全可靠基础上,降低安装成

(3) 经济性原则任保证安全可靠基础上,降低安装成本。优化设计方案,减少不必要材料和人工费用;选用

性价比高的仪表和配件,降低采购成本;采用标准化施工方法和工艺,提高施工效率,降低施工成本和时间成本,提高施工质量;选择低功耗仪表和设备,节能降耗,降低运营成本,提高经济效益。(4)可维护性原则。采用模块化设计,便于更换维修个别部件,减少维护工作量和时间成本;安装时预留足够空间,方便维护人员操作检查,提高维护效率;对设备和线路进行清晰标识,减少误操作风险;提供详细安装和维护手册,指导维护人员正确操作,减少维护错误。遵循这些原则,能确保电气仪表安装的质量和效益,保障其安全、可靠、经济、易维护地运行。

3 常见问题及解决方案

3.1 安装位置选择不当

3.1.1 问题

电气仪表安装位置不当会带来诸多问题。环境温度方面,若靠近高温位置,内部元件会因高温性能下降、老化加快,降低测量精度且易致故障,缩短使用寿命。湿度影响下,在潮湿地环境区域,水汽易侵入仪表内部,电路板受潮腐蚀、元件短路,影响正常工作,化工企业和海上作业常见此类故障。电磁干扰也不容忽视,靠近大型电机、大电流等场合会有强磁场,强磁场会干扰信号传输与处理,致测量数据不准、工作不稳定。机械振动在工厂生产线等场所会使仪表零部件松动、焊点开裂或虚焊,从而导致接触不良。此外,空间受限如安装在狭小通风不良处,散热困难致内部温度升高,影响性能寿命,且空间狭小不便安装、调试和维护。这些问题可能导致仪表无法正常工作,影响机器性能和安全运行,所以在设计时需充分考虑安装环境因素,选择合适位置,确保仪表长时间稳定运行。

3.1.2 解决方案

电气仪表安装位置不当可从三方面解决。(1)重新评估安装位置。勘察仪表安装环境的温度、湿度、电磁场强度和振动情况等,结合仪表要求与参数确定最佳位置。如温度敏感仪表需远离高温源且通风好的位置,精确测量仪表避开强电磁干扰区。复杂环境可利用模拟软件分析不同位置影响,选出最优处,防安装不当致故障。(2)增加防护措施。粉尘大的环境加装防尘罩,保证密封性和透气性防粉尘且散热,定期清理。潮湿环境安装防水罩或做密封处理,用防水胶等密封易进水部位。磁场干扰强的环境用屏蔽罩或屏蔽电缆隔离电磁场,保证信号准确。(3)定期检查。制定巡检计划,查仪表显示、信号传输和零部件等,及时处理问题。请专业人员检测校准,依环境和重要性确定检测频率。进行

预防性维护,如换易损件、清洁电路板和检查电池电量等,延长使用寿命,减少故障^[2]。

3.2 环境条件不达标

3.2.1 问题

在电气仪表安装过程中,环境条件不达标是一个常见问题。如果安装环境的温度过高或过低,可能会影响仪表内部电子元件的性能。比如在高温环境下,仪表可能会出现过热现象,导致测量精度下降甚至损坏;而在低温环境下,某些元件可能会出现性能不稳定的情况。湿度也是一个关键因素,过高的湿度会使仪表内部受潮,容易引发短路等故障。此外,电磁干扰会干扰仪表的信号传输和处理,导致测量数据不准确。在一些工厂、实验室等场所,由于各种设备的运行,电磁干扰问题较为突出。如果这些环境条件不达标,将会严重影响仪表的正常工作,降低其可靠性和准确性,甚至可能导致仪表无法正常使用,影响整个系统的运行。

3.2.2 解决方案

在工业生产和各类设备运行中, 仪表的正常工作至 关重要。首先,改善环境条件方面,增加空调和除湿机 是行之有效的办法。如在高温潮湿的厂车间, 夏季时高 温高湿环境使仪表故障频发,安装空调后,车间温度得 到控制, 再配合除湿机降低湿度, 仪表的故障率明显下 降。这不仅提高了仪表的工作稳定性和可靠性,也减少 了因仪表故障导致的机器停止运行。其次,选用适应性 强的仪表同样关键。化工企业的生产环境存在强腐蚀性 气体,海上作业高湿、高盐,普通仪表很快会被腐蚀损 坏。而选用经过特殊处理、材质耐腐蚀的仪表, 就能在 这种恶劣环境下稳定工作。对于一些户外或温差较大的 场所,选择防护等级高、温度适应范围广的仪表,可确 保其在不同环境下正常运行,大大提高了仪表的适用范 围。最后,加强屏蔽措施。在靠近高压线或大型电气设 备的区域, 磁场干扰严重影响仪表的信号传输。通过安 装金属屏蔽罩或使用屏蔽电缆,能有效阻挡外界电磁干 扰。就像在变电站附近的仪表监测系统中,增加屏蔽措 施后,仪表的数据传输准确性和稳定性大幅提高。

3.3 电源和信号线连接问题

3.3.1 问题

在电气仪表的安装及施工过程中,电源线和信号线连接问题不容忽视。如果电源和信号线连接不当,会给仪表的正常运行带来严重影响。一方面,电源线的错误连接可能导致仪表无法正常启动。例如,电源线正负极接反,会使仪表内部电路无法得到正确的供电还有可能将仪表烧坏,从而无法正常工作。电源线连接不牢固在

设备运行过程中出现松动虚接,导致仪表供电不正常。 另一方面,信号线连接不牢固在设备运行过程中出现松 动虚接,导致信号中断或不稳定。在一些振动较大的环 境中,不牢固的连接更容易引发故障。

3.3.2 解决方案

首先,检查接线。在安装和调试过程中,施工人员 应仔细检查电源和信号线的连接情况。对于电源线,要 确保正负极连接正确,并且连接牢固可靠。对于信号 线,要检查接头是否插紧,线路是否有破损或短路的情 况。还可以使用万用表、专用设备等工具进行检测,确 保接线的正确性。正确的接线能够为仪表提供稳定的电 源和准确的信号传输,从而确保仪表的正常工作,降低 故障率。其次,选用合格且质量可靠的电缆和接头。合 格的电缆应具有良好的绝缘性能、抗干扰能力和足够的 承载能力。接头应选择质量可靠、接触良好的产品。在 一些特殊环境中, 如高温、潮湿或有腐蚀性气体的场 所,还应选择具有相应防护性能的电缆和接头。这样可 以有效提高接线的可靠性和耐用性,减少因连接材料质 量问题而导致的故障。最后,定期检测电源和信号线的 连接情况。可以制定定期检测计划,对仪表的电源和信 号线进行全面检查。检查内容包括连接是否松动、电缆 是否有破损、接头是否有腐蚀等。如果发现问题,应及 时进行处理,避免故障的发生。定期检测能够及时发现 潜在的问题,确保仪表的正常工作。

3.4 接地与屏蔽问题

3.4.1 问题

在电气仪表使用中,接地和屏蔽不当威胁极大。接 地不当很关键,若接地电阻大,电流无法有效导入大 地,仪表不能及时释放静电等干扰电流。如在摩擦起电 多的工业环境,接地不良会使静电积累产生高电压,冲 击电子元件致电路损坏或性能下降。屏蔽措施不到位也 麻烦,信号线屏蔽层有缺陷或未可靠接地,易被外部电 磁干扰穿透,在工厂车间、变电站等有大量电气设备的 场所,设备运行产生强电磁场,仪表信号线无良好屏蔽 保护会受干扰,信号出现偏差、失真,影响测量精度和 控制准确性。而且接地与屏蔽都有问题时,会相互作用 加剧电磁干扰,使仪表工作极不稳定,可能误报警、误动作,严重影响生产正常进行和安全。

3.4.2 解决方案

(1)检查接地。定期用专业测试仪检测接地电阻, 一般仪表应在4欧姆以下,对电磁干扰敏感的仪表需达2 欧姆以下。若超范围,排查接地线路老化、接触不良或 接地极腐蚀等原因,采取更换线路、紧固连接点或更换 接地极等措施。在特殊环境中用防振垫片、防腐涂料保 证接地连接可靠。(2)加强屏蔽。根据实际情况选合适 屏蔽材料,如金属箔、编织网、套管等。高频干扰用金 属编织网, 低频磁场用高磁导率金属屏蔽层。确保仪表 外壳和信号线屏蔽层完整密封,用导电胶、密封垫处理 接缝开口[3]。避免信号线与强电线路平行,若无法避免则 保持间距并穿金属管增强屏蔽。确保屏蔽层可靠接地, 多芯信号线每根芯线单独接地。(3)隔离措施。光电 隔离利用光信号传输实现隔离,根据仪表参数选择光电 隔离器。变压器隔离通过电磁耦合,初级绕组连输入信 号,次级绕组连输出信号,注意选择合适型号参数确保 隔离效果。这些措施可有效减少电磁干扰对电气仪表的 影响。

结束语:电气仪表安装及施工是一项复杂而重要的工程。在安装及施工过程中,必须充分考虑各种因素,严格遵循安装技术要点和原则,及时解决常见问题。通过选择合适的安装位置、确保安装环境符合要求、正确连接电源和信号线、做好接地与屏蔽等措施,可以提高电气仪表的稳定性和可靠性,减少故障发生,保障生产的顺利进行。还要不断总结经验教训,加强技术创新和管理水平,将有助于提高电气仪表安装及施工的质量和效率,为工业发展做出更大的贡献。

参考文献

- [1]戚玉良.电气仪表安装及施工过程中应注意的问题分析[J].全面腐蚀控制,2021,35(2):90-92.
- [2]张志远.电气仪表安装及施工过程中应注意的问题 分析[J].百科论坛电子杂志,2021(11):3091.
- [3]郑聚合.电气仪表安装及施工过程中应注意的问题 分析[J].百科论坛电子杂志,2021(14):2747.