电力工程变电运行技术研究

林 郁 杭州供电公司 浙江 杭州 310004

摘 要:在电力工程领域,本文深入探讨了电力工程变电运行技术的关键方面,包括变电系统运行状况的评估方法、变电运行中的核心技术(如验电、控制开关异常处理、运行保护、设置接地线及避免过高电压等),以及这些技术在安全技术及管理实践中的应用。通过加大对电力设备的维护力度和制定科学的安全应急系统,提出了提升电力工程变电运行安全性和稳定性的策略,旨在为电力行业提供有益的参考和指导。

关键词: 电力工程; 变电运行; 技术研究

引言

电力工程变电运行技术是确保电力系统稳定供电的 关键所在。随着社会对电力需求的日益增长,变电系统 的安全性和可靠性愈发显得至关重要。本文聚焦于电力 工程变电运行技术的当前状况及其面临的挑战,深入探 索其在运行保护、故障应对及安全管理等关键领域的实 际应用与策略。期望通过本文的探讨,能够为电力行业 的持续发展提供有力的技术支持和坚实的理论依据,推 动电力工程技术的不断革新与进步。

1 电力工程变电系统运行状况评估

电力工程变电系统犹如电网的心脏, 其稳定运行至 关重要,而这其中电力设备维护和运行状况评估是管理 的核心环节, 检修工作的现状令人担忧, 多数情况下, 检修人员的关注点局限于已经故障的零部件,对那些虽 未出现明显故障,但运行状况不佳的零部件缺乏足够重 视,这种做法就像在变电系统中埋下了一颗颗"定时炸 弹",随时可能引发安全事故,严重威胁电力系统的稳 定运行[1]。为扭转这一局面,变电检修工作必须向全面 化转变。管理部门要充分发挥主导作用,深入了解设备 的具体状况,量身定制专属的检修方案。要选拔经验丰 富的检修人员,他们是保障检修质量的关键因素。这些 检修人员在作业时,必须严格依照既定方案中的方法和 流程进行操作,任何一点疏忽都可能导致设备的二次损 伤,进而扩大损失。在检修过程中,检修人员要肩负起 详细记录的重任,对每个部件的运行状况和潜在安全风 险都要有清晰的记录。一旦发现故障设备,要立即更 换。并且要将检查内容与检修方案的要求细致对照,保 证没有任何遗漏。通过这样全面、科学的检修方式,能 够及时将潜在隐患扼杀在摇篮里,大大降低安全事故发 生的概率。全面检修不仅关乎变电系统自身的稳定, 更 对整个电力系统有着深远意义。它是保障电力设备稳定 运行的基石,为电力系统的正常运作筑牢防线,确保可靠、持续的电力供应,满足社会各行各业以及人民生活的用电需求。

2 电力工程中变电运行技术

2.1 验电

验电在电力工程变电运行中是一项关键操作,是工 作人员开展检修设备工作的重要前期准备环节, 为整个 检修过程筑牢安全防线。当准备对设备进行检修时, 首要步骤是对准备检修的设备及其相关电路执行断电操 作。完成断电后,紧接着便是验电工作,且验电必须在 接地线之前实施。验电的核心目的在于精准确认待检修 设备是否完全处于无电压状态。这需要对设备的进出线 两侧都进行严格检验, 因为任何一侧存在电压却未被检 测到,都可能在后续检修过程中引发严重的安全事故, 危及工作人员的生命安全。在针对高压电进行验电的过 程中,安全防护措施至关重要。工作人员必须佩戴绝缘 手套,这是保障人身安全的基本要求。在一些特殊情况 下, 若条件不允许使用验电器, 可采用绝缘棒代替。绝 缘棒在这种情境下能够发挥类似的检测功能,帮助工作 人员初步判断设备是否带电。验电操作看似简单,实则 需要工作人员高度的专注和专业的技能。任何一个小的 疏忽都可能导致不可挽回的后果。如果验电不全面,遗 漏了进出线某一侧的检测,可能使工作人员在接触仍带 电的设备时遭受电击;若不按规定佩戴绝缘手套或使用 合适的替代工具,也会大大增加触电风险。严格遵循验 电的操作流程和安全要求,是电力工程变电运行安全检 修的重要保障。

2.2 控制开关异常

在电力工程的实际运行中,控制开关扮演着至关重要的角色。由于长期处于负荷工作状态,开关控制过热这一异常现象屡见不鲜。这种过热问题会对开关的性能

产生严重影响,其中最为突出的是远程开关控制功能的 失效。当控制开关出现过热故障时,其内部的电气元件 性能可能发生改变,导致信号传输受阻或控制指令无法 准确执行, 进而使远程控制功能无法正常实现。这不仅 会影响电力系统的正常调度和操作, 还可能在关键时刻 引发严重的安全隐患。一旦发现控制开关存在异常,迅 速而准确的故障诊断是关键。必须在第一时间确定故障 发生的具体位置。这需要借助专业的技术手段,如通过 热成像仪检测温度异常点、利用电气检测设备分析电路 参数变化等。通过这些方法,可以快速定位故障根源。 在确定故障位置后,如果只是轻微的故障,可以尝试采 取控制措施来避免问题进一步恶化。对于因接触不良导 致的过热, 可以在确保安全的前提下对接触点进行紧固 或修复。但如果故障位置的损耗过于严重,例如关键的 触头严重烧损或控制电路元件完全损坏,那么必须果断 地进行更换开关器的处理。这样做的目的是确保变电运 行技术的正常监测功能不受影响, 使电力系统的运行状 态能够得到持续、准确的监控。保证控制开关能够灵活 应用,及时响应各种操作指令,维持电力供应的稳定性 和可靠性,保障整个电力工程的安全稳定运行。任何对 控制开关异常问题的忽视或处理不当,都可能引发连锁 反应,对电力系统造成不可估量的损失。

2.3 运行保护

在电力工程的实际运行中, 变电运行的复杂性不言 而喻, 其涉及众多程序且系统控制繁琐, 在此过程中, 实时监控各电气设备的运行参数是保障系统安全稳定运 行的关键[2]。(1)对于电气设备而言,诸如油位、继 电器等关键部分的性能参数需要持续监测。油位的高低 直接关系到设备的润滑和散热效果, 若油位异常可能导 致设备磨损加剧或过热损坏。继电器的性能参数也同样 重要,它关乎电路的通断控制和保护功能,任何参数的 偏差都可能引发电路故障。只有确保所有电气设备的参 数都在安全正常范围内,整个电力系统才能稳定运行。 (2) 变电运行技术在应对故障方面有着重要作用,特别 是对各线圈内的短路问题。当短路现象发生时,系统能 够迅速且有效地做出反馈。一旦监测到线路短路故障, 差动保护机制会即刻启动。这一机制就像是电力系统的 "安全卫士",它通过专业技术手段对相关区域进行详 细监测,准确诊断故障所在。(3)区域监测的方式十 分关键。它可以精确地定位短路发生的具体位置,是在 某个特定的变压器线圈、还是在其他电气连接部位。这 有助于维修人员快速响应,采取针对性的措施来修复故 障。如果是某个变压器线圈短路,维修人员可以及时更 换受损的线圈部分,避免故障进一步扩大影响整个变电系统。

2.4 设置接地线

装设接地线的工作有着严格的操作规范,一般需要 2人协同配合完成。在操作顺序方面,要先接接地端, 然后再接设备端。这种顺序是基于安全考虑而确定的, 先连接接地端可以确保在连接设备端时,工作人员处于 相对安全的环境。在整个装设接地线的过程中, 工作人 员必须全程佩戴绝缘手套。绝缘手套作为重要的防护装 备,可以有效防止工作人员触电,为操作过程提供可靠 的安全防护。接地线装设完成后,后续的安全防护措施 也不能忽视。应当在周围设置明显的警示牌和护栏,这 是为了防止无关人员在不知情的情况下靠近检修区域而 发生危险。警示牌可以清晰地向周围人员传达此处正在 进行危险作业的信息,而护栏则在物理层面上形成一道 屏障,阻止人员进入。这些综合性的措施共同编织了一 张严密的安全防护网, 为检修现场筑起了一道坚实的屏 障。它们不仅确保了检修作业在安全、稳定的环境中高 效推进,还有效防范了因疏忽大意而可能引发的各类安 全事故。通过这些措施的实施,每一位参与检修的工作 人员以及周边人员的生命安全与健康均得到了充分的保 护, 使得检修工作得以在无忧无虑的环境下顺利开展, 为电力系统的稳定运行贡献了重要力量。

2.5 避免过高电压

在变压器运行期间,多种因素可能致使电压异常升 高,给电力系统带来严重危害。(1)断路器故障以及系 统设备故障是引发系统参数改变的常见原因,这种改变 会导致变电站内部电压超出正常范围。特别是在夏季, 雷电活动频繁,变压器的高压端极易遭受雷击,这无疑 进一步增加了变压器内电压升高的风险。(2)过高的电 压对变压器有着极大的破坏力。变压器内部的绝缘体在 设计上有其额定电压承受范围, 当电压过高时, 绝缘体 所承受的电场强度大幅增加,超出其绝缘耐受能力。这 会导致绝缘体内部的绝缘性能迅速下降,可能出现局部 放电现象,随着时间推移,放电会逐渐扩大并破坏绝缘 体的结构完整性。一旦绝缘体受损严重,就无法再有效 隔离电路,可能引发短路故障,强大的电流会在短时间 内产生大量热量,进而烧毁整个变压器,使电力供应中 断,给用户带来巨大损失。(3)为了有效避免这种情况 的发生,需要采取一系列针对性措施。首先,定期检查 线路中的电压至关重要。通过安装在关键位置的电压监 测设备,可以实时获取电压数据,及时发现电压异常波 动情况。对变压器内绝缘体的质量也要进行定期检查,

查看是否有老化、损坏的迹象。为变压器配备合适的避雷器是一项关键的防雷措施。避雷器能够在雷电击中变压器高压端时,迅速将雷电产生的过电压引导入地,从而保护变压器免受雷击损害,保障变压器的正常运行,维持电力系统的稳定供电。

3 电力工程变电运行的安全技术及管理的实际应用

3.1 加大对电力设备的维护力度

(1) 定期全面检查是维护电力设备的基础工作。维 护人员需要依据设备的类型、使用年限、运行环境等因 素,制定详细的检查计划。对于变压器,要检查油温、 油位、绕组温度、绝缘电阻等参数,确保其正常运行, 因为变压器一旦出现故障,可能导致大面积停电。对断 路器而言,要关注其触头磨损情况、操作机构的灵活性 以及灭弧性能,保证在需要切断电路时能可靠动作。 (2) 采用先进的检测技术和设备能够提高维护的精准 性。利用红外热成像技术可以检测设备的发热情况,及 时发现潜在的过热故障点。因为许多设备故障在初期会 表现为局部温度异常升高,通过红外热成像检测能在故 障尚未扩大之前就发现问题。超声波检测技术可用于检 测设备内部的绝缘缺陷、机械松动等问题, 为设备的健 康状况评估提供更多依据。(3)及时处理设备的老化和 磨损问题是维护工作的关键环节。电力设备在长期运行 过程中,不可避免地会出现零部件老化、磨损现象。对 于老化严重的绝缘部件,要及时更换,防止因绝缘性能 下降引发短路事故。对于磨损的机械部件,如轴承、齿 轮等,要根据磨损程度进行修复或更换,确保设备的机 械性能良好。

3.2 制定科学的安全应急系统

第一,风险评估是构建安全应急系统的基础。需要对变电运行过程中可能出现的各类风险进行全面分析,包括自然灾害(如地震、洪水、雷击等)对变电站设施的破坏,设备故障(如变压器短路、断路器失灵等)引发的电力中断,以及人为失误(如操作不当、误触设备

等)导致的安全事故[3]。通过详细的风险评估,确定每种 风险发生的概率、影响范围和可能造成的损失程度。第 二,应急响应计划是安全应急系统的核心内容。针对不 同的风险情况,应制定明确、具体的应急响应流程。当 发生雷击导致变电站部分设备损坏时, 应急响应计划要 涵盖从故障检测、警报发出、人员调度到故障修复的全 过程。要明确各部门和人员在应急过程中的职责,确保 抢修人员能够迅速到达现场,维修所需的工具、设备和 备件能够及时供应。设立现场指挥中心,统一协调抢修 工作,避免出现混乱局面。第三,建立有效的通信机制 至关重要。在应急状态下,良好的通信是保障信息传递 及时、准确的关键。要确保变电站内部、变电站与上级 调度中心、变电站与抢修队伍之间的通信畅通。可以采 用多种通信手段,如电话、无线电、网络等,并建立备 用通信系统,以应对主通信方式失效的情况。通过及时 的信息沟通,能够更好地掌握事故现场的情况,合理调 配资源,提高应急处理的效率。

结语

电力工程变电运行技术的深入探索与实践,对于电力系统的稳定运行起到了至关重要的作用。通过持续的技术优化与改进,以及加强电力设备的维护与安全管理,我们已能够有效应对各种电力挑战,确保电力供应的可靠与安全。展望未来,我们应继续密切关注技术创新,不断推进电力工程变电运行技术的发展,为电力系统的持续稳定运行提供更加坚实的技术支撑与保障。

参孝文献

[1]陈继超.电力系统变电运行的安全管理和设备维护探究[J].工程技术研究,2020,5(1):176-177.

[2]陈亮亮.电力工程中变电运行技术的应用剖析[J].科技视界.2019(14):69

[3]王明辉.浅析500kV变电运行精益化管理研究[J].科 技视界,2019(07):133-140.