二等水准测量方案设计

郭佛保

四川鑫利宝测绘有限公司 四川 成都 610000

摘 要:二等水准测量在大地测量及工程建设中作用关键。方案设计涵盖仪器设备合理选型,依据测量区域特征规划观测路线,采用规范观测方法并构建严谨数据处理流程。优化层面,强调仪器校准维护精细管理、观测环境实时监测应对、观测人员专业培训提升以及数据质量控制体系健全完善,以此保障二等水准测量成果的高精度与可靠性,为各类应用提供坚实支撑。

关键词: 二等水准; 测量方案; 设计

引言

在现代测绘领域,高精度的高程数据至关重要。二等水准测量作为获取高精度高程信息的关键手段,广泛应用于大地测量控制网构建、大型工程建设前期地形测绘等诸多场景。本文详细阐述二等水准测量方案设计,从仪器设备的挑选、观测路线的科学规划,到观测方法与数据处理流程的确定,均进行深入探讨。针对方案提出多维度优化建议,旨在进一步提升二等水准测量的精准度与效率。

1 二等水准测量的重要性

二等水准测量作为大地测量体系中的关键环节,其 重要性贯穿于工程建设、科学研究及自然资源管理的多 个维度。在大型基础设施建设中,如跨江跨海桥梁、 超高层建筑群及复杂地质条件下的隧道工程,二等水准 测量通过毫米级精度控制,为结构安全设计提供基准参 数,确保工程在长期运营中抵御自然沉降、温度变形等 影响。例如, 在地铁盾构施工时, 精确的地面沉降监测 数据可实时调整推进参数,避免因超挖或欠挖导致的结 构破坏。在地球动力学研究领域,二等水准测量是监测 地壳垂直运动的重要技术手段。通过周期性复测, 科研 人员可解析区域性构造运动特征,揭示地震活动、冰川 消融等过程对地表形态的影响机制。例如,对青藏高原 周边断层带的长期监测,已识别出多处毫米级垂直位移 异常区,为地震预警提供了关键数据支撑。在自然资源 管理中, 二等水准测量成果是构建三维地理信息系统的 核心基础。高精度数字高程模型(DEM)不仅服务于流 域规划、水土保持等生态工程, 更为智慧城市建设提供 空间基准。例如,在智慧城市地下空间开发中,基于二 等水准数据的地下管线三维建模,可精准模拟施工对既 有设施的影响,避免因高程误差导致的管线破坏事故。 在测绘技术迭代中, 二等水准测量作为传统光学测量与 现代卫星定位技术的衔接点,持续推动着大地测量技术的融合发展。其严格的质量控制体系与误差分配模型,为GNSS高程拟合、InSAR地表形变监测等新型技术提供了校准基准,确保了多源数据融合应用时的精度一致性。这种技术传承性,使其在保持传统精度优势的同时,不断拓展着现代测绘的应用边界[1]。

2 二等水准测量的方案设计

2.1 仪器设备选择

在二等水准测量中, 仪器设备的精准度与稳定性对 测量成果起着决定性作用。水准仪作为核心测量仪器, 应选用高精度的自动安平水准仪或电子水准仪。例如, 天宝DINI系列电子水准仪,其测量精度可达±0.3mm/ km, 凭借先进的数字图像处理技术, 能快速且准确地识 别水准尺条码, 自动读取并记录数据, 极大减少人为读 数误差。配套的水准尺需采用线条式因瓦合金标尺,因 瓦合金材质具有极低的膨胀系数,能有效抵御温度变化 对尺长的影响,确保测量尺度的稳定性。水准尺的分划 精度应达到0.5mm, 并且尺面刻度清晰、均匀, 以便水准 仪精准识别。为保障水准仪的稳定,三脚架应选用坚固 耐用、材质刚性强的产品,如碳纤维材质三脚架,其重 量较轻,便于携带,同时具备良好的抗震性能,能有效 减少外界震动对水准仪的干扰。在水准测量过程中,还 需配备水准仪脚架调节螺旋,用于精确调整水准仪的水 平度,确保水准仪处于理想的观测状态。测站间的数据 传输设备也不容忽视, 可选用蓝牙模块或无线数据传输 器,实现水准仪与数据采集终端的无缝连接,及时、准 确地将测量数据传输至终端设备,方便后续的数据处理 与存储。

2.2 观测路线规划

观测路线的合理规划是确保二等水准测量顺利开展 及成果准确可靠的关键环节。在规划前,需对测区进行

全面细致的勘察, 收集测区的地形地貌资料, 包括地 形起伏状况、交通道路分布、障碍物位置等信息。依据 测区的实际情况,结合测量任务要求,确定水准路线的 大致走向。尽量选择地势相对平坦、通视条件良好的路 线,避免穿越沼泽地、陡峭山坡以及大型建筑物密集区 域。这样既能减少观测过程中水准仪的架设次数,提高 测量效率,又能降低大气折光和地形起伏对测量结果的 影响。对于大型测区,水准路线可采用闭合环线或附合 路线的形式。闭合环线能有效检核测量过程中的误差积 累, 当环线闭合差在允许范围内时, 可认为测量结果可 靠。附合路线则通过与已知水准点进行联测,提高测量 成果的准确性。在路线规划时,要合理设置水准点,水 准点应选在地基稳固、易于保存且便于观测的位置,如 基岩露头、坚固的建筑物墙角等。相邻水准点间的距离 一般控制在1-2km, 在地形复杂区域可适当缩短间距。要 对水准点进行统一编号,并绘制详细的水准点位置图, 方便后续测量作业与资料整理[2]。

2.3 观测方法

二等水准测量观测过程需严格遵循相关技术规范, 以保证测量精度。在观测前,要对水准仪进行全面检 校,包括i角误差、圆水准器轴误差等,确保仪器处于最 佳工作状态。观测时,采用中丝读数法,按后-前-前-后 的顺序进行观测。先在后视水准尺上读取上、中、下丝 读数,然后转动水准仪照准前视水准尺,同样读取上、 中、下丝读数,接着再次照准前视水准尺读取中丝读 数,最后照准后视水准尺读取中丝读数。这种观测顺序 能有效消除仪器和水准尺下沉等误差的影响。水准仪的 视线高度应保持在0.5m以上,以减少地面辐射热对视线 的干扰。前后视距要尽量相等, 其差一般不超过1m, 视 距累积差不超过3m,这样可削弱i角误差对高差测量的影 响。在观测过程中,要注意保持水准仪的稳定,避免仪 器晃动。读取水准尺读数时,要确保读数清晰、准确, 估读至毫米位。每个测站观测完成后,要及时计算本站 的高差及前后视距差、视距累积差等数据,并进行检 核。若发现数据超限,应立即重测该测站。相邻测站间 的观测要保持连续性, 避免出现观测中断时间过长的情 况,以减少外界环境变化对测量结果的影响。

2.4 数据处理

数据处理是二等水准测量的重要环节,直接关系到最终测量成果的质量。在数据采集过程中,要确保数据的完整性与准确性,对采集到的原始数据进行初步检查,剔除明显错误的数据。利用专业的数据处理软件,如南方平差易,将观测数据录入软件中。录入时要仔细

核对数据,防止数据录入错误。软件会根据测量路线的形式,自动建立相应的平差模型。对于闭合环线或附合路线,进行严密平差计算。平差过程中,考虑到观测误差的影响,采用最小二乘法原理,对观测高差进行平差改正,以求得最或是高差。计算各水准点的高程时,要根据已知水准点的高程和经平差后的高差进行推算。要计算平差后的精度指标,如每千米高差全中误差、往返测高差不符值等,用以评估测量成果的精度。将平差计算结果与规范要求的限差进行对比,若各项精度指标均满足限差要求,则认为测量成果合格;若有部分指标超限,需对超限部分进行分析,查找原因,必要时进行返工重测。对合格的测量成果进行整理,编制水准测量成果表,绘制水准路线图,为后续的工程应用提供准确、可靠的数据支持。

3 二等水准测量方案的优化建议

3.1 仪器校准与维护优化

(1)建立定期全面仪器校准机制,每次重大测量任 务前,用高精度标准器具严格校准水准仪,测定i角误 差、补偿器误差等关键参数并与出厂标称值比对,记录 误差数据、建立校准档案。例如,可利用标准基线场 实地校准, 获取更准确结果。(2)强化日常维护保养 工作,水准仪使用后,及时清理仪器表面灰尘、污渍, 尤其要注意清理镜头、水准尺卡槽等关键部位, 防止异 物影响测量精度。定期对仪器内部电子元件进行检查, 查看是否有松动、氧化等情况,对于电子水准仪,还要 关注电池续航能力,及时更换老化电池,保障仪器稳定 运行。例如,可采用专业的电子仪器清洁剂清洁仪器内 部,避免因腐蚀导致故障。(3)在仪器运输过程中, 采用定制的减震防护箱,内部填充高密度海绵等缓冲材 料,减少震动对仪器的损害。每次运输后,对仪器进行 简易检查,如查看水准仪气泡是否居中、按键是否灵敏 等,确保仪器在运输后仍能正常工作。例如,为天宝 DINI系列电子水准仪配备专用防护箱,降低运输风险^[3]。

3.2 观测环境监测与应对

(1)在测区设置多个环境监测点,采用温湿度传感器、气压计等设备实时监测观测环境的温湿度、气压变化情况。根据监测数据,分析环境因素对测量精度的影响规律。例如,在高温时段,记录温度变化与测量误差的对应关系,为后续应对措施提供数据支撑。(2)针对不同环境因素制定相应应对策略,当温度变化较大时,可在水准仪上安装遮阳罩,减少阳光直射导致的仪器受热不均,降低温度对i角的影响。在湿度较高的环境中,采用干燥剂对仪器及水准尺进行防潮处理,防止水汽凝

结影响视线清晰度和标尺刻度识别。例如,在雨季测量时,在三脚架底部放置干燥剂盒,保持仪器周围环境干燥。(3)利用气象预报信息,合理安排观测时间。尽量选择在天气晴朗、风力较小、温湿度相对稳定的时段进行观测,避免在恶劣天气条件下作业。如遇强风天气,可采用加重三脚架配重块、增设防风绳等方式增强仪器稳定性,确保观测数据的可靠性。例如,根据天气预报提前规划,将观测任务集中安排在一周内天气较好的时段。

3.3 观测人员培训与管理

(1) 开展针对性的专业技能培训, 定期组织观测人 员参加二等水准测量技术规范、仪器操作技巧等方面的 培训课程。邀请行业专家进行授课,通过理论讲解与实 际操作相结合的方式,加深观测人员对测量技术的理 解。例如,举办为期一周的培训班,集中学习最新的测 量规范和仪器操作要点。(2)建立观测人员技能考核机 制,定期对观测人员进行技能考核,考核内容包括仪器 操作熟练度、测量数据准确性、误差处理能力等。根据 考核结果,对表现优秀的人员给予奖励,对考核不通过 的人员进行补考或重新培训,确保观测人员整体技能水 平符合要求。例如,每季度进行一次技能考核,对成绩 排名靠前的人员给予奖金激励。(3)加强观测人员的团 队协作管理, 在测量任务中, 明确各观测人员的职责分 工,如仪器操作员、记录员、前后视观测员等。定期组 织团队建设活动,增强观测人员之间的沟通与协作能力, 提高测量工作效率。例如,在每次测量任务前召开小组会 议,明确各成员职责,任务结束后进行总结反思。

3.4 数据质量控制体系完善

(1)构建多层次的数据质量审核流程,在数据采集现场,由观测人员对原始数据进行初步审核,检查数据的完整性、合理性,如水准尺读数是否在合理范围、视距差是否超限等。数据采集完成后,由专业的数据审

核人员利用数据处理软件进行二次审核,重点检查平差计算结果是否符合精度要求,对可疑数据进行标记和复查。例如,建立数据审核清单,按清单逐项检查数据。(2)引入数据质量追溯机制,为每一组测量数据赋予唯一标识,详细记录数据采集的时间、地点、观测人员、仪器设备等信息。当发现数据质量问题时,可通过追溯标识快速定位问题源头,分析问题产生的原因,采取针对性措施进行改进。例如,利用数据库系统为数据添加详细元数据,方便数据追溯。(3)持续优化数据处理算法,关注行业内最新的数据处理技术和算法研究成果,结合二等水准测量实际需求,对现有数据处理软件的算法进行优化升级。例如,引入更先进的抗差估计算法,提高数据处理过程中对粗差的识别和剔除能力,进一步提升测量成果的准确性[4]。

结语

综上所述,二等水准测量方案设计需综合考量仪器 设备、观测路线、观测方法及数据处理等多方面要素。 通过仪器校准维护优化、观测环境监测应对、观测人员 培训管理强化以及数据质量控制体系完善,可有效提升 测量成果的精度与可靠性。随着技术不断进步,二等水 准测量方案也应持续优化创新,以更好地满足各类工程 建设与科学研究对高精度高程数据的需求。

参考文献

[1]张运强.二等水准测量的误差分析及消除方法[J].大 众标准化,2024(24):48-50.

[2]魏迎国.二等水准测量在矿区沉降形变监测中的应用[J].中国金属通报,2022(9):165-167.

[3]张婕.二等水准测量的误差分析及消除方法[J].河南 科技,2020(17):117-119.

[4]杜文举.张恒,景淑媛.精密三角高程代替二等水准测量的研究[J].铁道勘察,2020,46(4):1-4.