面向智慧化的重载铁路发展研究

孔鹏莒

国能朔黄铁路发展有限责任公司机辆分公司 河北 沧州 062350

摘 要:本文聚焦面向智慧化的重载铁路发展研究。阐述智慧化技术概念及在交通领域的应用潜力,分析重载铁路在运输效率、安全性、运营成本方面的智慧化发展需求。介绍智能检测与监控、智能运维等智慧化技术在重载铁路中的应用。提出重载铁路智慧化发展路径,即试点先行、分阶段推广,旨在为重载铁路智慧化建设提供理论参考与实践指导。

关键词:智慧化;重载铁路;发展研究

引言:随着科技的飞速发展,智慧化技术正深刻变革各行业。在交通领域,重载铁路作为货物运输的关键力量,传统运营模式面临运输效率、安全性、运营成本等诸多挑战。智慧化技术为重载铁路发展带来新契机,通过实现设备互联、数据共享与智能决策,可提升运输效能、保障安全、降低成本。因此,深入研究面向智慧化的重载铁路发展具有重要的现实意义,有助于推动重载铁路迈向高质量发展新阶段。

1 智慧化技术概述

智慧化技术是在信息技术、物联网、大数据、人工 智能等前沿科技深度融合基础上发展起来的新兴技术体 系。它以数据为核心,通过各类传感器、智能设备等 实现对物理世界的全面感知,借助高速通信网络实现数 据的实时传输与共享,再运用先进的数据分析和挖掘算 法,对海量数据进行深度处理,从而为各行业提供智能 化的决策支持和服务。在交通领域,智慧化技术正深刻 改变着传统交通模式。例如,智能交通系统利用视频监 控、传感器等设备实时收集道路交通信息,通过数据分 析预测交通流量变化,进而实现交通信号的智能调控, 有效缓解城市交通拥堵。在铁路领域,智慧化技术同样 展现出巨大的应用潜力,可助力铁路实现更高效、更安 全、更智能的运营[1]。智慧化技术应用于重载铁路,能够 打破传统铁路运营中信息孤岛的局面,实现设备之间、 系统之间的互联互通与协同工作。通过对铁路基础设 施、列车运行状态、运输组织等多方面的实时监测和数 据分析,可提前发现潜在问题,优化运输方案,提高铁 路运营的整体效能。同时智慧化技术还能为铁路工作人 员提供更便捷、更精准的管理工具,提升工作效率和服 务质量。

2 重载铁路智慧化发展需求

2.1 运输效率提升

重载铁路承担着大量货物的运输任务,运输效率的高低直接影响着物流成本和经济发展。随着市场需求的不断增长,对重载铁路的运输能力提出了更高要求。传统重载铁路在运输组织、列车运行等方面存在诸多限制,导致运输效率难以进一步提升。例如,在列车编组环节,人工编组方式效率低下,容易出现编组错误,影响列车发车时间。在列车运行过程中,由于线路条件、信号系统等因素的限制,列车运行速度难以达到最优,且列车之间的追踪间隔较大,降低了线路的通过能力。智慧化技术的应用可以有效解决这些问题。通过智能调度系统,能够根据货物的流量、流向以及列车的实时状态,自动优化列车编组方案,提高编组效率。同时利用智能控制技术,可实现对列车运行速度的精准调控,缩短列车追踪间隔,提高线路的通过能力,从而提升重载铁路的整体运输效率。

2.2 安全性保障

重载铁路运输具有运量大、速度快、运行环境复杂等特点,安全问题至关重要。任何安全事故都可能导致严重的人员伤亡和财产损失,影响铁路运输的正常秩序。传统重载铁路的安全保障主要依赖于人工巡检和定期维护,这种方式存在检测不及时、漏检等问题。例如,对于铁路轨道、桥梁等基础设施的病害检测,人工巡检难以做到全面、细致,容易遗漏一些潜在的安全隐患。智慧化技术为重载铁路安全保障提供了有力手段。智能检测与监控技术可以实时监测铁路基础设施的状态,如轨道的几何尺寸、桥梁的应力应变等,一旦发现异常情况能够及时预警。智能安防技术能够对铁路沿线进行全方位监控,防止非法人侵和破坏行为,保障铁路运输的安全。

2.3 运营成本优化

重载铁路的建设和运营需要巨大的资金投入,运营

成本的控制对于铁路企业的可持续发展至关重要。传统 重载铁路在设备维护、能源消耗等方面存在成本较高 的问题。在设备维护方面,由于缺乏有效的监测手段, 往往采用定期检修的方式,这种方式不仅增加了维护成 本,还可能导致设备过度维修或维修不足^[2]。在能源消耗 方面,列车的运行能耗较大,缺乏有效的节能措施。智 慧化技术可以通过对设备运行状态的实时监测和数据分 析,实现设备的预测性维护,减少不必要的维修工作, 降低维护成本。智能调度和控制技术可以优化列车的运 行方案,降低列车的运行能耗,实现运营成本的优化。

3 智慧化技术在重载铁路中的应用

3.1 智能检测与监控技术

智能检测与监控技术是重载铁路智慧化的重要基础。它利用各类传感器、摄像头等设备,对铁路基础设施、列车运行状态等进行实时监测。在铁路基础设施检测方面,如轨道几何状态检测系统,通过在轨道上安装传感器,实时测量轨道的轨距、高低、方向等参数,一旦发现轨道变形超出安全范围,及时发出预警。桥梁健康监测系统则利用应变计、加速度计等传感器,对桥梁的应力、振动等参数进行监测,评估桥梁的结构安全状况。在列车运行状态监测方面,通过在列车上安装各种传感器,实时监测列车的速度、加速度、温度、压力等参数,确保列车运行安全。利用视频监控技术,对列车内部和外部进行实时监控,防止发生安全事故和货物被盗等情况。

3.2 智能运维技术

智能运维技术作为重载铁路智慧化发展的关键环 节,依托大数据分析和人工智能算法,对铁路设备的运 行数据进行全方位、深层次的挖掘与分析。在海量数据 中,它精准捕捉设备运行的细微变化,通过对设备历史 运行数据、故障记录等关键信息的系统分析,构建出 科学可靠的设备故障预测模型。以机车车辆的关键部件 为例,像发动机、制动系统等,这些部件的正常运行直 接关系到铁路运输的安全与效率。智能运维技术能够实 时监测这些部件的运行参数,如温度、压力、振动频率 等。一旦数据出现异常波动,便会迅速结合故障预测模 型进行分析,提前预判可能出现的故障,并据此制定详 细的维护计划。另外,智能运维技术还具备强大的远程 监控和诊断功能。维修人员无需亲临现场, 只需通过网 络就能远程获取设备的运行状态信息, 快速准确地进行 故障诊断,并提供专业的维修指导。这不仅大大缩短维 修时间,提高维修效率,还降低维修成本,为重载铁路 的安全稳定运行提供坚实保障。

3.3 智能安防技术

智能安防技术宛如一道坚不可摧的屏障, 为重载铁 路提供了全方位、多层次的安全保障,是重载铁路智慧 化发展中不可或缺的重要一环。它涵盖了铁路沿线周界 防范系统、视频监控系统以及入侵报警系统等多个关键 子系统。铁路沿线周界防范系统运用红外对射、电子围 栏等先进技术,构建起一道严密的封闭防线,对铁路沿 线进行24小时不间断监控。一旦有非法入侵行为,系统 会立即发出尖锐的警报,将危险扼杀在萌芽状态。视频 监控系统则像一双双永不疲倦的眼睛, 对铁路车站、线 路、桥梁等重点区域进行实时、细致的监控。借助智能 视频分析技术, 它能够敏锐地识别出各种异常行为和事 件,如人员闯入、货物掉落等,并迅速将相关信息通知 给相关人员进行处理[3]。而入侵报警系统与公安部门紧 密联网,一旦发生安全事件,能够在第一时间将报警信 息准确无误地传递给公安部门,大大缩短了应急响应时 间,为及时处置安全事件赢得了宝贵的时间,确保重载 铁路的安全稳定运行。

3.4 智能调度与控制技术

智能调度与控制技术堪称实现重载铁路高效运行的 核心驱动力, 在重载铁路智慧化进程中扮演着举足轻重 的角色。它高度集成了列车运行计划编制、运行调整 以及信号控制等一系列关键功能,构建起一个精密且高 效的智能化调度与控制体系。智能调度系统宛如一位经 验丰富的指挥家,能够依据货物的运输需求、列车的实 时状态以及线路的通过能力等诸多因素, 快速且精准地 自动编制出最优的列车运行计划。在列车运行过程中, 它还能像一位敏锐的洞察者, 根据实际情况实时调整列 车运行方案。无论是处理列车晚点问题,还是调整列车 追踪间隔,都能做到游刃有余,确保列车运行的有序与 高效。信号控制系统则采用了先进的通信技术和智能算 法, 为列车运行提供了自动控制和安全防护的双重保 障。以基于无线通信的列车自动控制系统(CBTC)为 例,它就像列车的"千里眼"和"顺风耳",能够实时 获取列车的位置、速度等关键信息,并自动调整信号显 示。通过这种精准的控制,有效避免了列车追尾、冲突 等安全事故的发生,确保列车始终在安全稳定的轨道上 运行,为重载铁路的高效运输保驾护航。

3.5 客户服务与信息管理平台

客户服务与信息管理平台是重载铁路迈向智慧化的 关键拼图,在提升铁路服务质量和运营效率方面发挥着 不可替代的作用。对于客户而言,该平台宛如一个贴 心的运输小助手。它提供了极为便捷的货物运输信息查 询、预订、支付等一站式服务。客户只需轻点鼠标或滑动屏幕,就能实时掌握货物的运输状态、预计到达时间等关键信息,货物运输的透明度得到了极大提高。而且,平台还具备在线预订和支付功能,客户无需再奔波于各个线下网点,足不出户就能轻松办理货物运输业务,大大节省了时间和精力。在铁路运营管理方面,信息管理平台就像是一个强大的信息中枢。它集成了运输生产、设备维护、安全管理等各方面的信息,打破了信息孤岛,实现了信息的实时共享和协同工作。通过先进的数据分析和挖掘技术,平台能够从海量的信息中提炼出有价值的内容,为铁路企业的决策提供精准、科学的支持。这不仅提高了铁路运营管理的效率,还增强了决策的科学性,助力重载铁路在智慧化的道路上稳健前行。

4 重载铁路智慧化发展路径

4.1 试点先行

重载铁路智慧化发展是一项复杂的系统工程,涉及 到技术、管理、安全等多个方面。为了确保智慧化建设 的顺利进行,应采取试点先行的策略。选择部分具有代 表性的重载铁路线路或区段作为试点,开展智慧化技术 的应用和示范。在试点过程中,充分验证智慧化技术的 可行性、可靠性和有效性,积累建设经验。例如,可以 先在一条重载铁路干线上试点智能检测与监控技术,对 铁路基础设施和列车运行状态进行实时监测,评估系统 的性能和效果。同时在试点过程中,要注重与相关部门 和企业的合作,共同推进智慧化建设。加强与科研机构 的合作,开展关键技术的研发和创新;与设备供应商合 作,共同开发适合重载铁路的智慧化设备和系统。

4.2 分阶段推广

在试点取得成功的基础上,逐步扩大智慧化技术的应用范围,分阶段进行推广。第一阶段,在试点线路的基础上,将智慧化技术推广到周边相邻的线路或区段, 形成小规模的智慧化铁路网络。在这个阶段,重点完 善智慧化系统的功能和性能,提高系统的稳定性和可靠性。第二阶段,将智慧化技术应用到整个重载铁路干线,实现干线铁路的智慧化运营。在这个阶段,要加强不同线路之间的互联互通和协同工作,建立统一的智慧化运营管理平台[4]。第三阶段,将智慧化技术拓展到重载铁路的枢纽站场、物流基地等,实现重载铁路运输全过程的智慧化。同时加强与其他运输方式的衔接和协同,构建综合交通运输智慧化体系。在分阶段推广过程中,要注重制定统一的标准和规范,确保不同阶段的智慧化系统能够相互兼容和协同工作。同时要加强对智慧化建设的评估和监管,及时发现和解决存在的问题,保障重载铁路智慧化建设的健康发展。

结束语

重载铁路智慧化发展是顺应时代潮流的必然选择, 对提升铁路运输竞争力、促进经济发展意义重大。通过 试点先行、分阶段推广的发展路径,智慧化技术在重载 铁路中的应用将不断深化。未来,需持续加强技术创新 与合作,完善标准规范,强化评估监管,确保智慧化建 设稳步推进。相信在各方共同努力下,重载铁路将实现 全面智慧化,为构建高效、安全、绿色的综合交通运输 体系贡献重要力量。

参考文献

[1]孙雁胜,于海军,魏玉光.大秦铁路重载列车"速密重"合理匹配研究[J].铁道运输与经济,2020,42(11):1-5,11.

[2]李艳玲.智慧城市背景下档案信息化转型策略[J].档案管理理论与实践-浙江省基层档案工作者论文集,2021, (00):308-310.

[3]齐成坤.面向智慧化的重载铁路研究[J].现代交通与路桥建设,2025,4(1).DOI:10.37155/2811-0633-0401-60.

[4]朱雨,石利刚,王健慧.面向智慧化的重载铁路发展研究[J].交通科技与经济,2021,23(4):59-64.DOI:10.19348/j.cnki.issn1008-5696.2021.04.010.