建筑工程框架结构的建筑工程施工对策

黄柏霖 中键精诚工程咨询(北京)有限公司 北京 100000

摘 要:框架结构作为建筑工程的核心支撑体系,其施工质量直接影响建筑安全性与耐久性。当前施工过程中,模板工程质量缺陷、钢筋工程施工偏差、混凝土工程施工隐患等问题频发,制约工程品质提升。通过深入剖析各分项工程施工问题,针对性提出强化模板工程施工管理、提升钢筋工程施工精度、完善混凝土工程施工工艺及加强施工过程质量监督等优化对策,有助于规范施工流程,保障框架结构施工质量,为同类工程提供理论与实践参考。

关键词:建筑工程;框架结构;施工对策

引言

在建筑工程领域,框架结构以其空间灵活、承载能力强等优势广泛应用。然而,施工过程中,模板工程漏模、变形,钢筋工程锚固长度不足、间距不均,混凝土工程蜂窝麻面、强度不达标等问题屡见不鲜。这些问题不仅影响施工进度,更威胁建筑结构安全。本文聚焦框架结构施工常见问题,系统分析成因,提出科学优化对策,旨在提升框架结构施工质量,推动建筑工程行业高质量发展。

1 建筑工程框架结构概述

建筑工程框架结构作为现代建筑中广泛应用的结构 体系,以梁和柱构成的框架作为承重骨架,承担竖向荷 载与水平荷载, 使建筑空间具有高度灵活性与可塑性。 框架结构中的梁、柱通过节点刚性连接, 形成三维空间 受力体系,这种构造方式不仅能有效传递和分配荷载, 还为建筑内部提供了大跨度、分隔自由的使用空间,满 足商业、办公、住宅等多样化功能需求。从力学原理分 析,框架结构通过合理设计梁柱截面尺寸与配筋,利用 材料的抗压、抗弯性能,将建筑所受荷载经由梁柱逐级 传递至基础。在竖向荷载作用下,梁以受弯为主,柱主 要承受压力; 遭遇风荷载、地震作用等水平荷载时, 框 架整体表现为弯剪受力特性,梁柱节点需具备足够的强 度与延性,以保证结构在复杂受力状态下的稳定性。为 优化框架结构的受力性能,工程实践中常采用变截面 梁、加强柱脚连接等技术手段,提升结构的承载能力与 抗震性能。框架结构的施工建造结合了钢筋混凝土浇筑 与预制装配两种主流工艺。钢筋混凝土现浇框架凭借整 体性强、节点可靠的优势, 能够适应复杂建筑造型与不 规则平面布局; 预制装配式框架则通过工厂化生产、现 场装配的模式,显著提高施工效率,减少现场湿作业与 环境污染, 在标准化、规模化建筑项目中展现出独特优 势。随着建筑工业化与智能建造技术的发展,框架结构的构件设计与连接技术不断革新,新型高性能材料的应用,进一步增强了结构的耐久性与安全性,使其在超高层建筑、大跨度公共建筑等领域持续发挥重要作用。基于有限元分析等先进计算方法,框架结构的设计已实现精细化、智能化,能够精准模拟结构在各类工况下的力学行为,为建筑工程的安全可靠提供坚实保障。

2 建筑工程框架结构的建筑工程施工常见问题分析

2.1 模板工程质量缺陷

模板工程作为混凝土成型的关键支撑体系,其质量 直接影响结构构件的尺寸精度、外观质量及安全性。在 实际施工中,模板工程易出现多种质量缺陷。模板的强 度与刚度不足是常见问题, 当模板材料选用不当或支撑 体系设计不合理时, 浇筑混凝土过程中, 模板无法承受 混凝土的侧压力与振捣产生的冲击力,导致局部变形甚 至整体坍塌。这种变形不仅会使混凝土构件尺寸偏差超 出规范要求,造成梁、板、柱截面尺寸不准确,影响建 筑的使用功能与美观, 还可能引发裂缝, 削弱构件的承 载能力,严重威胁建筑结构安全。模板拼接不严密同样 不容忽视。施工过程中, 若模板拼接时未采用合适的密 封材料,或拼接工艺粗糙,会在模板缝隙处出现漏浆现 象。漏浆导致混凝土表面蜂窝、麻面,影响构件外观质 量,增加后期修补成本。漏浆会造成混凝土局部强度降 低,削弱结构的整体性。模板安装位置不准确也会带来 诸多问题,如轴线偏移、垂直度偏差等,这不仅影响后 续装饰装修工程的施工,还可能使建筑结构受力不均, 改变构件的受力状态,降低结构的抗震性能与稳定性。 模板拆除时间过早,混凝土强度尚未达到设计要求,会 使混凝土构件在脱模时因受力不均产生裂缝, 影响构件 的耐久性与承载能力;拆除时间过晚,则会增加模板周 转次数,影响施工进度,提高施工成本[1]。

2.2 钢筋工程施工偏差

钢筋工程是建筑框架结构的重要组成部分, 承担着 传递与承受荷载的关键作用。然而,施工过程中常出现 各种偏差问题。钢筋加工尺寸偏差是较为普遍的现象, 在钢筋调直、切断、弯曲等加工环节, 若加工设备精度 不足、操作人员技术不熟练或未严格按照设计图纸要求 加工,会导致钢筋长度、弯曲角度等不符合设计规定。 这些尺寸偏差的钢筋安装到构件中,会影响钢筋的锚固 长度与搭接长度,削弱钢筋与混凝土之间的粘结力,降 低结构的承载能力。钢筋安装位置偏差同样影响工程质 量。在钢筋绑扎与安装过程中, 若未严格控制钢筋间 距、保护层厚度,会导致受力钢筋位置偏移。钢筋间距 过大,会使混凝土在受力时因有效配筋面积减少而出现 裂缝;间距过小,则会影响混凝土的浇筑与振捣,导致 混凝土无法充分包裹钢筋,降低二者协同工作性能。保 护层厚度不足,钢筋易受外界环境侵蚀,缩短结构使用 寿命;保护层过厚,则会降低构件的有效高度,影响结 构的承载能力。钢筋连接质量问题也不容忽视, 无论是 绑扎搭接、焊接还是机械连接, 若连接方式选择不当、 操作不规范,都会导致连接部位强度不足。绑扎搭接 时, 搭接长度不够或绑扎不牢固, 在荷载作用下, 钢筋 易产生滑移;焊接过程中,焊接参数不准确、焊缝不饱 满,会降低焊接接头的强度;机械连接时,连接件质量 不合格或安装不到位,同样会影响连接效果,使结构在 受力时连接部位成为薄弱环节,引发安全隐患。

2.3 混凝土工程施工隐患

混凝土工程是建筑框架结构的主体, 其施工质量直 接关系到建筑的整体性能与使用寿命。但施工过程中存 在诸多隐患。混凝土配合比不合理是首要问题,水泥、 骨料、水及外加剂的比例不当,会严重影响混凝土的性 能。水泥用量过多,混凝土水化热过高,易产生温度裂 缝;用量不足,则会降低混凝土强度。骨料级配不良, 会导致混凝土和易性差, 出现离析、泌水现象, 影响混 凝土的浇筑质量。水灰比过大,混凝土强度降低,耐久 性变差; 水灰比过小, 混凝土流动性不足, 难以振捣密 实。混凝土浇筑过程中的问题也会产生隐患。浇筑速度 过快, 混凝土内部气体无法及时排出, 会形成空洞、蜂 窝等缺陷;浇筑高度过高,混凝土自由下落时会产生离 析。振捣不密实,混凝土内部存在空隙,降低混凝土强 度与抗渗性;振捣过度,则会使混凝土产生分层、泌 水,影响混凝土的均匀性。混凝土浇筑过程中出现中 断,若未按规范要求处理施工缝,会在施工缝处形成薄 弱环节,降低结构的整体性与防水性能。混凝土养护不 当同样危害严重,养护时间不足,混凝土强度增长缓慢,且易因水分蒸发过快产生干缩裂缝;养护温度与湿度控制不合理,也会影响混凝土的水化反应,降低混凝土的强度与耐久性。在冬期施工时,若未采取有效的保温措施,混凝土受冻,会导致内部结构破坏,强度大幅降低,严重影响建筑结构的安全性能^[2]。

3 建筑工程框架结构的建筑工程施工优化对策

3.1 强化模板工程施工管理

(1)模板体系设计需依据建筑结构特点与施工荷载 参数,通过力学计算精准确定模板支撑间距、龙骨规格 及对拉螺栓布置。采用BIM技术建立三维模型进行碰撞 检测,优化模板拼接节点,避免因设计缺陷导致漏浆、 涨模等问题。对于高大模板支撑体系,需在现场进行预 拼装试验,验证其稳定性与可靠性,确保实际施工时满 足承载力要求。(2)模板材料的选择直接影响施工质量 与效率,应优先选用刚度大、平整度高且周转性能良好 的材料。如新型铝合金模板,其表面经过特殊处理,脱 模后混凝土表面光滑平整,减少后期抹灰工作量;铝合 金模板重量轻、安装便捷, 可显著缩短工期。施工前需 对模板进行严格验收,对存在变形、破损的模板及时修 复或更换, 防止因模板质量问题影响混凝土成型效果。 (3)模板安装过程中,需严格控制垂直度、平整度与 标高。采用激光水平仪、全站仪等精密测量仪器进行定 位,确保模板安装误差控制在规范允许范围内。模板支 撑系统应与主体结构可靠连接,形成稳定的空间受力体 系,抵抗混凝土浇筑过程中的侧向压力。在混凝土浇筑 过程中,安排专人对模板进行监测,发现异常及时采取 加固措施,避免发生模板坍塌事故。

3.2 提升钢筋工程施工精度

(1)钢筋加工环节需严格按照设计图纸与规范要求进行,采用数控钢筋加工设备,可精确控制钢筋的下料长度、弯曲角度与箍筋内净尺寸。对于复杂节点处的钢筋,如梁柱节点、悬挑构件等,通过三维建模进行钢筋排布优化,确保钢筋位置准确,避免因钢筋碰撞导致安装困难。加工完成的钢筋需进行抽样检验,对不合格品坚决予以报废处理,防止流入施工现场。(2)钢筋连接技术的选择对工程质量至关重要,应根据钢筋直径、使用部位及施工条件合理选用。对于直径较大的钢筋,优先采用直螺纹套筒连接,该连接方式具有接头强度高、施工速度快、质量稳定等优点。连接前需对套筒与钢筋丝头进行匹配性检查,确保丝头长度、牙型符合要求。连接过程中,使用力矩扳手控制拧紧力矩,保证连接质量。(3)钢筋安装时,需严格控制钢筋间距、保护层厚

度。采用定位筋、马凳筋等措施保证钢筋位置准确,防止在混凝土浇筑过程中发生位移。对于双层双向板筋,需设置足够数量的马凳筋,确保上层钢筋不下沉。在梁柱节点处,需按设计要求加密箍筋,保证核心区混凝土的约束效果。安装完成后,采用钢筋保护层厚度检测仪进行检测,对不满足要求的部位及时进行调整^[3]。

3.3 完善混凝土工程施工工艺

(1)混凝土配合比设计是保证工程质量的关键环 节,需根据工程特点、使用环境及原材料性能进行优 化。通过试配试验确定最佳配合比,在满足强度要求的 前提下,控制混凝土的水胶比、坍落度,提高混凝土的 和易性与耐久性。对于大体积混凝土,需掺加适量的缓 凝型减水剂与粉煤灰,降低水泥水化热,防止产生温度 裂缝。(2)混凝土浇筑过程中,需根据结构特点选择合 适的浇筑方法与顺序。对于框架柱,采用分层浇筑、分 层振捣的方式,每层浇筑高度不超过500mm,振捣时避 免振捣棒直接触碰模板与钢筋, 防止模板变形与钢筋移 位。对于梁板结构,采用斜向分层、连续浇筑的方式, 保证混凝土的整体性。在浇筑过程中,需控制混凝土的 浇筑速度与高度,防止产生离析现象。(3)混凝土养护 对其强度增长与耐久性提升至关重要, 浇筑完成后需及 时进行养护。对于普通混凝土,在浇筑完毕后12h内进行 覆盖保湿养护,养护时间不少于7d;对于抗渗混凝土、 大体积混凝土, 养护时间不少于14d。采用洒水养护时, 需保证混凝土表面始终处于湿润状态;对于不便洒水养 护的部位,可采用养护剂进行养护,形成保护膜,减少 水分蒸发,确保混凝土强度正常增长。

3.4 加强施工过程质量监督

(1)建立现场质量巡查机制,施工管理人员需深入施工现场,对各工序施工质量进行实时检查。运用超声波检测仪、回弹仪等检测设备,对模板支撑体系的稳定性、钢筋的保护层厚度、混凝土的强度等进行无损检测,及时发现潜在质量问题。针对关键部位与薄弱环

节,如后浇带、施工缝等,需加大检查频次,确保施工质量符合设计要求。(2)推行施工质量样板引路制度,在分项工程大面积施工前,先制作施工样板,经各方验收合格后,组织施工人员进行观摩学习,明确施工工艺标准与质量验收要求。通过样板施工,可提前发现施工过程中存在的问题,优化施工工艺,避免大面积返工。施工过程中,要求施工人员严格按照样板标准进行操作,确保施工质量的一致性。(3)引入信息化管理手段,利用工程管理软件对施工过程进行实时监控。通过在施工现场安装传感器、摄像头等设备,实现对模板沉降、混凝土温度、钢筋应力等参数的实时监测,并将数据上传至管理平台。一旦数据出现异常,系统自动报警,管理人员可及时采取措施进行处理。利用信息化平台对施工质量数据进行统计分析,总结质量控制经验,持续改进施工质量^[4]。

结语

综上所述,建筑工程框架结构施工质量与建筑全生命周期安全息息相关。通过强化模板工程施工管理、提升钢筋工程施工精度、完善混凝土工程施工工艺及加强施工过程质量监督等措施,可有效解决施工常见问题。未来,需持续关注新材料、新技术在框架结构施工中的应用,进一步优化施工工艺,推动建筑工程框架结构施工技术不断革新,为建筑行业发展注入新动能。

参考文献

- [1]吴坤龙.建筑工程钢筋混凝土框架结构的施工问题 及对策[J].中国建筑金属结构,2022(12):61-63.
- [2]杨成年.建筑工程钢筋混凝土框架结构的施工问题 及对策[J].房地产导刊,2024(8):38-40.
- [3]于志浩.建筑工程框架结构施工技术问题及对策研究[J].世界家苑,2025(1):25-27.
- [4]王照欣.建筑工程钢筋混凝土框架结构的施工问题 及对策[J].全体育,2020(15):170-171.