交通工程盾构设备管理及维保措施探讨

袁志光 张 宇 河南新恒通公路工程有限责任公司 河南 南阳 473000

摘 要:随着交通建设的快速发展,盾构设备在隧道工程中扮演着至关重要的角色。本文旨在探讨交通工程中盾构设备的管理与维保措施,以确保其高效运行和长期稳定性。本文首先分析了盾构设备的结构组成及在交通工程中的应用现状,随后指出了当前设备管理中存在的问题,并提出了针对性的管理措施和维保策略,旨在提高盾构设备的可靠性和使用寿命,为交通工程的顺利进行提供有力保障。

关键词: 交通工程: 盾构设备管理: 维保措施

引言:交通工程作为城市发展的重要基石,其建设质量与效率直接影响到城市的运行与发展。盾构设备作为隧道掘进的关键设备,在交通工程中发挥着不可替代的作用。然而,盾构设备的管理与维保却面临诸多挑战。本文旨在深入探讨交通工程中盾构设备的管理与维保措施,以期提高设备的使用效率,延长设备寿命,确保施工安全与质量,为交通工程的快速发展提供有力支撑。

1 盾构设备概述

1.1 盾构设备的定义与分类

盾构设备是一种专用于隧道掘进的大型工程机械,它能够在地下进行连续作业,开挖、排土、衬砌等施工环节均在盾构壳体的保护下进行。根据地质条件和工程需求的不同,盾构设备可分为多种类型,主要包括土压平衡盾构、泥水平衡盾构、复合式盾构以及针对不同地层特性的特殊盾构,如岩石地层适用的TBM(硬岩隧道掘进机)等。

1.2 盾构设备的结构组成与主要部件

盾构设备主要由盾体、刀盘、驱动系统、推进系统、排土机构、管片拼装机、电气与液压控制系统以及辅助设备等部分组成。盾体是盾构机的主要结构部件,分为前盾、中盾和尾盾三部分;刀盘负责切削土体;驱动系统为刀盘提供动力;推进系统推动整个盾构机向前移动;排土机构将切削下来的渣土运出;管片拼装机负责拼装管片衬砌;电气与液压控制系统控制各部分的动作和协调工作;辅助设备如注浆系统、通风降温装置等满足施工中的特殊需求^[1]。

1.3 盾构设备在交通工程中的优势与局限

盾构设备在交通工程中具有显著优势,如地面作业少、对周围环境影响小、自动化程度高、施工速度快且质量高等。然而,其也存在一定局限,如施工设备费用较高、在特定地质条件下(如陆地上覆土较浅或水下覆

土过浅)施工难度较大、以及在小曲率半径隧道掘进时 可能存在困难等。因此,在选用盾构设备时,需综合考 虑工程需求、地质条件以及经济成本等因素。

2 交通工程盾构设备管理现状及问题

2.1 当前盾构设备管理的现状

(1)管理制度与规范。当前,盾构设备管理面临的 一个主要问题是管理制度与规范的缺失或不完善。虽然 我国从国外引进了盾构技术,但相关管理标准和规范仍 不够统一,导致不同地区、不同单位的管理制度存在差 异,甚至出现管理混乱的现象。这种现状不利于设备管 理的规范和高效运行, 也影响了盾构施工的整体效率和 质量。(2)人员配置与培训。在人员配置方面,盾构施 工需要专业的操作和维护人员。然而,由于盾构施工环 境艰苦,工作强度大,导致专业人员短缺。同时,部分 企业对员工的培训不足,使得操作人员的技能水平参差 不齐,影响了设备的正常运行和维护。(3)设备采购与 调配。设备采购与调配方面,虽然盾构设备技术复杂, 但一些施工单位在采购时未能充分考虑设备的适用性和 经济性,导致设备采购成本高昂。在调配方面,由于施 工项目的多变性和不确定性,设备的调配往往不够灵 活,影响了施工效率。

2.2 盾构设备管理存在的问题分析

(1)管理职责不清。在盾构设备管理中,存在管理职责不清的问题。项目部管理人员设备管理责任和义务往往不挂钩,导致设备管理责任落实不到位。这种现状不仅影响了设备管理的效果,也增加了施工风险。(2)维护保养不及时。由于管理制度不完善和人员配置不足,盾构设备的维护保养往往不及时。这不仅缩短了设备的使用寿命,也增加了故障发生的概率,影响了施工效率和质量。(3)故障处理不迅速。当盾构设备出现故障时,由于缺乏专业的维修人员和有效的维修机制,故

障处理往往不够迅速。这不仅延长了停机时间,也增加了维修成本。(4)设备老化与更新问题。随着施工项目的不断进行,盾构设备逐渐老化。然而,一些施工单位对设备的更新换代不够重视,导致设备性能下降,无法满足日益复杂的施工需求。

3 交通工程盾构设备管理措施

3.1 明确设备管理目标与职责

(1)制定设备管理目标。结合交通工程的整体规划与盾构施工特点,制定设备管理目标。短期目标需确保盾构设备在每个施工阶段的开机率不低于95%,减少因设备故障导致的工期延误;长期目标则致力于通过精细化管理,将设备全生命周期成本降低15%-20%。同时,以"零重大设备事故"为安全目标,保障施工人员生命安全与工程顺利推进。(2)明确各级管理职责。建立三级管理体系,明确决策层、管理层与执行层职责。决策层负责制定设备管理战略、审批重大采购与更新计划;管理层需细化执行方案,监督设备使用与维护情况;执行层则具体落实设备操作、日常巡检等工作,确保设备运行符合规范。通过责任到人,避免管理漏洞。

3.2 建立完善的设备管理制度

(1)设备采购与验收制度。在设备采购环节,依据 工程地质条件、施工参数需求,制定科学的选型标准。 引入第三方专业机构对设备质量、性能进行评估,确保 采购设备符合国际或行业标准。验收时,严格按照合同 要求进行试运行与性能测试, 留存验收记录, 为后续管 理提供依据。(2)设备使用与维护制度。制定详细的 设备操作规程,明确操作流程与注意事项,禁止违规操 作。推行预防性维护计划,根据设备运行时长、工况特 点,定期开展润滑、紧固、校准等维护工作,建立设备 维护档案,记录维护时间、内容与效果,实现维护工作 的可追溯性。(3)设备故障报告与处理制度。建立24小 时故障报告机制,一旦设备出现故障,操作人员需立即 上报,并记录故障现象、发生时间等信息。组建专业抢 修团队,依据故障严重程度,制定分级处理方案,确保 一般故障2小时内响应,重大故障24小时内解决,最大限 度减少对施工的影响[2]。(4)设备报废与更新制度。依 据设备技术状况、使用年限、维修成本等因素,制定合 理的报废标准。对达到报废条件的设备,及时进行评估 与处置,避免"带病运行"。同时,结合行业技术发展 趋势, 适时更新设备, 提升施工效率与安全性。

3.3 强化设备管理人员培训

(1)提高管理人员专业水平。应定期对设备管理人员进行专业培训,提高其专业知识和技能水平。培训内

容应包括设备管理理论、设备操作规程、维护保养知识、故障排查与处理方法等。同时,可以组织管理人员参加行业内的交流研讨会,了解最新的设备管理理念和技术动态,拓宽视野。(2)增强管理人员责任意识。除了提高专业水平外,还应增强管理人员的责任意识。可以通过开展责任意识教育活动,让管理人员认识到自己肩负的责任和使命,明确设备管理对于施工质量和安全的重要性。同时,可以建立责任追究制度,对管理不善、责任落实不到位的人员进行问责,确保设备管理工作的顺利进行。

3.4 优化设备资源配置

(1)根据施工需求合理调配设备。在施工过程中,应根据施工需求和设备性能状况,合理调配设备。对于大型、复杂的盾构设备,应根据施工进度和计划,提前做好设备的调配准备工作。同时,应建立设备调配记录和分析制度,对设备调配的效果进行评估和分析,以便及时调整调配策略。(2)加强设备之间的协同配合。在设备管理过程中,还应加强设备之间的协同配合。不同设备之间往往存在一定的关联性,如盾构机与配套的后配套设备、运输车辆等。因此,在设备调配和使用过程中,应注重设备之间的协同配合,确保施工流程的顺畅和高效。例如,可以建立设备协同配合机制,明确各设备之间的协作关系和任务分工,确保施工任务的顺利完成。

4 交通工程盾构设备维保措施

4.1 盾构设备维保的重要性

在交通工程建设中,盾构设备承担着地下隧道挖掘的重任,其性能与稳定性直接关系到工程的进度、质量与安全。一旦盾构设备出现故障,不仅会导致施工进度停滞,造成巨大的经济损失,还可能引发隧道坍塌等严重安全事故。定期有效的维保能够及时发现并消除设备潜在隐患,延长设备使用寿命,保障施工连续稳定推进,同时降低因设备故障引发的安全风险,确保工程顺利竣工交付使用。

4.2 常规保养措施

(1)日常清洁与润滑。日常清洁是盾构设备保养的基础工作。盾构在地下作业环境复杂,易沾染大量泥土、碎屑等杂质,这些杂质若不及时清理,可能进入设备内部,加剧零部件磨损。因此,需每日对设备表面及关键部位进行清洁,保持设备干净整洁。同时,润滑是减少设备摩擦、降低能耗、延长零部件使用寿命的重要手段。按照设备使用手册要求,定期对轴承、齿轮、链条等部位加注合适的润滑剂,确保润滑充分,防止因润滑不良导致设备过热、卡死等故障。(2)定期检查与紧

固。定期对盾构设备各部件进行全面检查,能够及时发 现松动、磨损、变形等问题。检查内容包括螺栓螺母的紧 固情况、零部件的连接状态、液压系统的密封性等。对于 松动的螺栓螺母,要及时进行紧固,防止因振动等原因导 致部件脱落,影响设备运行安全。通过定期检查,可将 潜在故障扼杀在萌芽状态,保障设备稳定运行[3]。(3) 调整设备参数与性能。盾构设备在长期运行过程中,其 参数可能会发生偏移,影响施工精度和效率。因此,需 要定期对设备的掘进速度、推力、扭矩、注浆压力等关 键参数进行监测与调整。根据地质条件的变化和施工要 求, 合理优化设备参数, 确保设备性能处于最佳状态, 实现高效、精准施工。(4)防腐与防护处理。地下环境 潮湿,且可能存在腐蚀性物质,对盾构设备的金属部件 构成严重威胁。为防止设备腐蚀,需对设备表面进行防 腐处理,如喷涂防腐涂料、涂抹防锈油脂等。同时,为 关键部件安装防护罩,避免其受到外界碰撞、磨损和腐 蚀,有效延长设备使用寿命。

4.3 计划性维修与保养

(1)制定维保计划与周期。根据盾构设备的使用频 率、工作环境和制造商的建议,制定科学合理的维保计 划与周期。将设备的保养、维修工作细化到具体时间节 点和责任人,确保维保工作有序开展。维保计划应涵盖 日常保养、定期检修、大部件更换等内容, 明确各阶段 的工作重点和目标。(2)实施预防性维修措施。预防性 维修是通过对设备运行状态的监测和分析,提前发现潜 在故障, 并采取措施进行修复或更换, 避免故障发生。 利用先进的监测技术,如振动监测、温度监测、油液分 析等,实时掌握设备关键部件的运行状况。一旦发现异 常,及时安排维修人员进行检查和处理,降低设备突发 故障的概率。(3)加强关键部件的监测与更换。盾构设 备的刀盘、主轴承、液压泵、驱动电机等关键部件对设 备运行至关重要。加强对这些部件的监测,建立详细的 运行档案,记录其工作时间、磨损情况等信息。根据部 件的使用寿命和实际磨损程度,及时进行更换,确保关 键部件始终处于良好的工作状态,保障设备正常运行。

4.4 应急维修与故障处理

(1)建立应急维修机制。为应对盾构设备突发故 障,需建立完善的应急维修机制。成立应急维修小组, 明确各成员的职责和分工,确保在故障发生时能够迅速 响应。储备充足的应急维修物资和配件,建立应急物资 储备库,保证在紧急情况下能够及时获取所需物资。同 时,制定应急预案,定期组织应急演练,提高应急维修 小组的实战能力。(2)快速响应与处理故障。当盾构 设备出现故障时, 应急维修小组要在最短时间内到达现 场,对故障进行诊断和分析。根据故障的严重程度和影 响范围,制定合理的维修方案,迅速开展维修工作。在 维修过程中, 要充分利用先进的维修技术和设备, 提高 维修效率,尽快恢复设备运行,减少故障对施工进度的 影响[4]。(3)加强故障分析与预防措施。故障处理完 成后,要对故障原因进行深入分析,总结经验教训。通 过故障分析, 找出设备设计、使用、维护等方面存在的 问题,并采取针对性的预防措施,防止类似故障再次发 生。同时,将故障案例整理归档,作为培训资料,提高 维修人员和操作人员的故障识别和处理能力。

结束语

综上所述,交通工程盾构设备的管理与维保是确保施工安全、质量与效率的关键环节。通过明确管理目标与职责、建立完善的管理制度、强化人员培训、优化资源配置以及实施常规保养、计划性维修与应急维修等措施,可以有效提升盾构设备的可靠性和稳定性。未来,随着技术的不断进步和管理理念的更新,我们应持续优化管理与维保策略,为交通工程的可持续发展贡献力量。

参考文献

[1]辛亮.地铁盾构施工设备管理及维保措施探讨[J].设备管理与维修,2022,(04):36-37.

[2]钟伟超.城市轨道交通隧道盾构施工技术特点分析与应用[J].科技创新与应用,2023,(07):78-79.

[3]龚文棋.城市轨道交通隧道盾构施工关键技术研究 [J].运输经理世界,2022,(10):97-98.

[4] 覃潇潇.城市轨道交通隧道盾构施工技术特点分析与应用[J].工程机械与维修,2022,(12):118-119.