抽水蓄能电站大坝填筑施工技术研究

汪 鹏

中国水利水电第四工程局有限公司 青海 西宁 810000

摘 要:本文聚焦抽水蓄能电站大坝填筑施工技术展开深入研究。通过对抽水蓄能电站大坝填筑工程特点的分析,详细阐述了施工前的各项准备工作,包括场地规划、材料选择与检验等。深入探讨了填筑施工过程中的关键技术,如分层填筑、压实控制等,并针对施工中可能出现的质量问题提出相应的控制措施。最后,结合实际工程案例对研究成果进行验证,旨在为抽水蓄能电站大坝填筑施工提供科学、有效的技术指导,保障大坝填筑质量与工程安全。

关键词:抽水蓄能电站;大坝填筑;施工技术;质量控制

1 抽水蓄能电站大坝填筑工程特点

1.1 地质条件复杂

抽水蓄能电站通常选址于山区,地形起伏较大,地 质条件复杂多变。大坝基础可能存在软弱夹层、断层破 碎带等不良地质构造,这给大坝填筑施工带来了极大的 挑战。在施工过程中,需要对基础进行妥善处理,确保 大坝填筑体与基础之间的良好结合,防止因基础不均匀 沉降而导致大坝出现裂缝、渗漏等质量问题。

1.2 填筑材料要求高

为保证大坝的强度、稳定性和抗渗性,对填筑材料的质量要求极为严格。填筑材料不仅需要具备足够的颗粒级配、良好的压实性能,还应具有较低的压缩性和较高的抗剪强度。同时,由于抽水蓄能电站大坝的特殊工况,填筑材料还需满足一定的耐久性要求,以抵抗水流冲刷、冻融循环等外界因素的影响。

1.3 施工工期紧张

抽水蓄能电站建设通常具有明确的工期要求,大坝 填筑作为工程建设的关键线路之一,其施工工期往往较 为紧张。在有限的时间内完成大量填筑作业,需要合理 安排施工顺序、优化施工方案,提高施工效率,确保工 程按计划顺利推进。

1.4 环保要求严格

抽水蓄能电站大多位于生态环境较为敏感的区域, 大坝填筑施工过程中不可避免地会对周边环境产生一定影响。因此,在施工过程中需要严格遵守环保法规,采取有效的环保措施,减少施工扬尘、废水排放和噪声污染,保护生态环境,实现工程建设与环境保护的协调发展。

2 施工前准备工作

2.1 场地规划与布置

合理的场地规划是大坝填筑施工顺利进行的基础。 在施工前,应根据工程规模、施工工艺和运输要求,对 施工场地进行科学规划。这包括确定填筑材料的堆放场地、施工机械的停放与行驶路线、排水系统的布置以及临时设施的建设等。填筑材料堆放场地应选择在地势平坦、排水良好的区域,并设置合理的堆放高度和坡度,防止材料滑坡和流失。不同种类的填筑材料应分开堆放,并设置明显的标识,避免混淆使用。施工机械的停放与行驶路线应尽量缩短运输距离,提高运输效率,同时避免对已填筑区域造成破坏。在规划行驶路线时,应考虑机械的转弯半径和爬坡能力等因素。排水系统的布置应确保施工场地内的雨水和生活污水能够及时排出,防止积水影响施工进度和质量[1]。排水系统可采用明沟、暗管等形式,根据地形和排水量进行合理设计。临时设施的建设应满足施工人员的生活和办公需求,同时要符合安全和环保要求。

2.2 材料选择与检验

填筑材料的质量直接影响大坝的填筑质量。在选择 填筑材料时, 应充分考虑材料的物理力学性质、开采条 件和经济性等因素。常用的填筑材料包括土料、石料和 砂砾料等。土料应选择黏性适中、含水量合适的土料, 避免使用有机质含量过高、膨胀性较大的土料。有机质 含量过高的土料在分解过程中会产生气体,导致大坝内 部出现空洞,影响大坝的强度和稳定性。膨胀性较大的 土料在吸水后会膨胀, 失水后会收缩, 容易引起大坝的 开裂和变形。石料应具有足够的强度和耐久性, 粒径应 符合设计要求。石料的强度不足会导致大坝在承受水压 力和其他荷载时发生破坏, 粒径不符合要求会影响大坝 的压实效果和稳定性。砂砾料应具有良好的级配,含泥 量应控制在允许范围内。良好的级配能够使砂砾料在压 实过程中形成紧密的结构,提高大坝的密实度和抗渗 性。在材料进场前,应严格按照相关标准和规范对材料 进行检验。检验内容包括材料的颗粒分析、含水量、密 度、强度等指标。只有检验合格的材料才能进入施工现 场使用。同时,应建立材料追溯制度,对每一批次的材 料进行详细记录,包括材料的来源、检验报告、使用部 位等信息,以便在出现问题时能够及时追溯和处理。

2.3 施工机械选型与配套

施工机械的选型与配套直接影响施工效率和质量。 根据大坝填筑的工程量和施工工艺要求,应选择合适的 施工机械。常用的填筑施工机械包括挖掘机、装载机、 自卸汽车、推土机、振动碾等。挖掘机和装载机用于材 料的开挖和装载, 应根据材料的性质和开挖深度选择合 适型号的挖掘机和装载机。自卸汽车用于材料的运输, 其载重量和数量应根据运输距离和填筑强度进行合理确 定。运输距离较远时,应选择载重量较大的自卸汽车, 以减少运输次数,提高运输效率。推土机用于材料的平 整和摊铺,应选择功率适中、操作灵活的推土机。振动 碾用于材料的压实,应根据填筑材料的性质和压实要求 选择合适型号的振动碾。对于土料填筑,一般采用振动 凸块碾;对于石料填筑,可采用拖式振动碾或自行式振 动碾。在选型时,应考虑机械的性能参数、工作效率和 可靠性等因素[2]。同时,应根据施工进度要求,合理确 定机械的数量和配套关系,确保各施工环节能够紧密衔 接,提高施工效率。此外,还应定期对施工机械进行维 护和保养, 保证机械的正常运行, 减少因机械故障导致 的施工延误。建立完善的机械维护管理制度,定期对机 械进行检查、保养和维修,及时更换磨损的零部件。

3 填筑施工关键技术

3.1 分层填筑技术

分层填筑是大坝填筑施工的基本方法。根据设计要 求和填筑材料的性质,将大坝填筑区域划分为若干个填 筑层,每层填筑厚度应根据压实设备的性能和填筑材料 的特性确定。一般来说, 土料填筑层厚度宜控制在20-30cm, 石料填筑层厚度宜控制在80-100cm。在分层填 筑过程中, 应严格按照设计边坡坡度进行填筑, 确保大 坝的几何尺寸符合设计要求。每层填筑前,应对下层表 面进行清理和处理, 去除杂物和松散土石, 保证上下层 之间的良好结合。如果下层表面存在坑洼不平的情况, 应进行平整处理,避免在填筑过程中出现架空现象。填 筑时, 应采用进占法或后退法进行卸料, 避免汽车直接 在已填筑层上行驶,减少对已填筑层的破坏。进占法是 指汽车从填筑区的一端开始,边卸料边向前行驶,将材 料逐渐推进填筑区;后退法是指汽车从填筑区的边缘开 始,卸料后向后倒退行驶,再进行下一次卸料。在实际 施工中,可根据现场情况选择合适的卸料方法。

3.2 压实控制技术

压实是大坝填筑施工的关键环节,直接影响大坝的 密实度和强度。在压实过程中,应根据填筑材料的性质 和压实设备的性能,选择合适的压实参数,包括压实遍 数、压实速度和振动频率等。对于土料填筑,一般采用 振动碾进行压实。在压实过程中,应先静压1-2遍,使填 筑层表面平整,减少表面的凹凸不平,然后再进行振动 压实。振动压实遍数应根据现场试验确定,一般不少于 6-8遍。压实速度应控制在2-3km/h, 振动频率应根据填筑 材料的性质进行调整。如果压实速度过快,会导致压实 不均匀,影响压实效果;如果振动频率不合适,可能无 法达到良好的压实效果。对于石料填筑, 可采用振动凸 块碾或拖式振动碾进行压实。压实过程中, 应采用错距 法进行碾压,确保每个部位都能得到充分压实。石料填 筑的压实遍数应根据填筑层的厚度和石料的性质确定, 一般不少于8-10遍。错距法是指碾压设备在碾压过程中, 每次碾压的重叠宽度为一定值,通过多次碾压使整个填 筑层都能得到压实。在压实过程中, 应定期对填筑层的 压实度进行检测。常用的检测方法有灌砂法、环刀法和 核子密度仪法等。灌砂法是通过将标准砂灌入试坑中, 根据标准砂的质量和密度计算出试坑的体积,进而得到 填筑层的干密度和压实度;环刀法是用环刀取样,测定 填筑层的湿密度和含水量,再计算出干密度和压实度; 核子密度仪法是利用放射性元素测量填筑层的密度和含 水量,具有快速、准确等优点。通过检测结果及时调整 压实参数,确保填筑层的压实度达到设计要求。

3.3 结合面处理技术

大坝填筑过程中会存在多种结合面, 如新老填筑层 结合面、不同材料填筑层结合面等。结合面的处理质量 直接影响大坝的整体性和稳定性。对于新老填筑层结合 面,在填筑新层前,应对老层表面进行刨毛处理,刨毛 深度不宜小于3-5cm,并清除表面的浮土和杂物。刨毛处 理可以增加新老层之间的摩擦力,提高结合面的粘结强 度。然后洒水湿润,使老层表面含水量达到适宜状态, 再进行新层的填筑和压实。洒水湿润的目的是防止老层 吸收新层填筑材料中的水分,影响新层的压实效果。对 于不同材料填筑层结合面,应在结合面处设置过渡层。 过渡层的材料应选用级配良好的混合料, 其厚度应根据 两种材料的性质和设计要求确定。过渡层的填筑应与上 下层填筑同步进行,确保结合面的良好过渡和整体稳定 性。例如,在土料和石料填筑层之间设置过渡层,过渡 层可以采用由细到粗的砂砾料,以减少两种材料之间的 应力集中,提高结合面的抗剪强度。

4 施工质量控制措施

4.1 建立质量管理体系

建立完善的质量管理体系是保障大坝填筑施工质量的重要基础。施工单位应按照相关标准和规范的要求,制定详细的质量管理制度和质量计划,明确各部门和人员的质量职责,将质量管理工作落实到每一个施工环节。质量管理制度应包括质量目标管理、质量检查制度、质量奖惩制度等内容。质量目标管理应明确大坝填筑施工的质量目标,如压实度、强度等指标的要求。质量检查制度应规定质量检查的频率、方法和标准,确保施工过程中的质量问题能够及时发现和处理。质量奖惩制度应激励施工人员积极参与质量管理工作,对质量工作表现优秀的部门和个人进行奖励,对出现质量问题的部门和个人进行处罚。同时,应加强对施工人员的质量培训,提高施工人员的质量意识和操作技能。培训内容应包括填筑材料的质量要求、施工工艺的操作要点、质量检验的方法等方面。

4.2 加强施工过程质量检查

在施工过程中,应加强对各施工环节的质量检查。 质量检查应包括原材料检验、施工工艺检查和成品质量 检验等。原材料检验应严格按照检验批次进行,确保 进场材料的质量合格。对于每一批次的填筑材料,都应 进行颗粒分析、含水量、密度、强度等指标的检测,只 有检测合格的材料才能进入施工现场使用。施工工艺检 查应重点检查分层填筑厚度、压实参数、结合面处理等 是否符合设计要求和施工规范。在分层填筑过程中,应 使用测量工具定期检查填筑厚度, 确保每层填筑厚度符 合设计要求。在压实过程中,应检查压实设备的运行参 数,如压实遍数、压实速度、振动频率等,确保压实参 数符合规定。对于结合面处理,应检查刨毛深度、洒水 湿润情况、过渡层设置等是否符合要求[3]。成品质量检验 应在每层填筑完成后进行,通过检测压实度、密度、强 度等指标,评估填筑层的质量是否达标。对于检测不合 格的填筑层,应及时分析原因,采取有效的整改措施进 行处理,如重新压实、补充填筑材料等,确保施工质量 始终处于受控状态。

4.3 应对特殊情况的质量控制

在大坝填筑施工过程中,可能会遇到一些特殊情

况,如降雨、低温等。针对这些特殊情况,应制定相应 的质量控制措施。在降雨天气,应暂停填筑施工,并对 已填筑层采取覆盖防护措施, 防止雨水冲刷导致填筑层 质量下降。覆盖材料可以采用塑料薄膜、防雨布等, 确保已填筑层不被雨水浸泡。雨后复工前,应对填筑层 表面进行检查,如发现积水、松散等情况,应及时进行 处理。对于积水,应采用排水设备将水排出;对于松散 层,应进行清除和重新填筑压实,待填筑层含水量符合 要求后,方可继续施工。在低温环境下施工时,应采取 保温措施, 防止填筑材料冻结。对于土料填筑, 可在填 筑前对土料进行预热处理,提高土料的温度。预热方法 可以采用在土料堆上覆盖保温材料、使用加热设备等。 在压实过程中, 应适当增加压实遍数, 确保填筑层的压 实质量。由于低温环境下土料的塑性降低,需要增加压 实遍数才能使土料达到足够的密实度。同时,应加强对 低温施工过程的质量监测,及时调整施工工艺和参数, 保障施工质量。例如,定期检测填筑层的温度和压实 度,根据检测结果调整预热措施和压实参数。

结束语

随着抽水蓄能电站建设的不断发展,大坝填筑施工技术也将不断创新和完善。未来的研究可以进一步关注以下几个方面:新型填筑材料的研发与应用,探索更加环保、高性能的填筑材料,提高大坝的耐久性和安全性。智能化施工技术的应用,利用物联网、大数据、人工智能等技术手段,实现对大坝填筑施工过程的实时监测和智能控制,提高施工效率和质量。绿色施工理念的深入推广,在施工过程中更加注重生态环境保护,减少施工对周边环境的影响,实现工程建设与环境保护的和谐共生。

参考文献

[1]张利荣,严匡柠,张孟军.大型抽水蓄能电站渗控工程施工关键技术[C]//中国水力发电工程学会.中国水力发电工程学会.2015.

[2]文多志.浅谈水电站大坝帷幕灌浆施工技术[J].低碳世界,2016(17):53-54.

[3]周强.帷幕灌浆施工技术在水工建筑工程施工中的运用[J].建材发展导向(下),2020,018(005):178.