灌区节水改造中的渠道设计优化与应用研究

郭亚鑫

新疆兵团勘测设计院集团股份有限公司 新疆 石河子 832000

摘 要:本文聚焦灌区节水改造中的渠道设计优化问题,深入剖析当前灌区渠道设计存在的问题,从渠道水力计算、衬砌材料选择、断面形式优化等方面提出针对性的设计优化策略,并结合实际工程案例探讨优化设计的应用效果。研究结果表明,通过科学合理的渠道设计优化,可有效提高灌区水资源的利用效率,减少渠道输水损失,为灌区的可持续发展提供有力支撑。

关键词:灌区节水改造;渠道设计优化;水力计算;衬砌材料

1 当前灌区渠道设计存在的问题

1.1 水力计算不精准

传统渠道设计中的水力计算存在诸多局限性,往往 基于一些简化的假设和经验公式。这些公式在推导过程 中,对实际工程中的复杂因素进行了大量简化处理。例 如,在考虑地形影响时,可能仅将地形简化为均匀的坡 度,而忽略了实际地形中存在的起伏、弯曲以及局部障 碍物等。对于土壤条件,通常只是按照大致的土壤类型 进行分类计算,没有深入考虑土壤的孔隙率、渗透系数 在不同深度和位置的差异。水流状态方面, 也多是假设 为稳定、均匀的流动, 而实际水流可能存在湍流、漩涡 等复杂状态。这种不精准的水力计算导致计算结果与实 际情况存在较大偏差。以渠道的过水能力设计为例,由 于未能准确考虑地形和水流状态的影响, 计算得出的过 水能力可能过高或过低。若过高,在实际运行中,当实 际流量达到设计流量时,渠道可能会出现水位过高甚至 漫堤的情况,淹没周边农田和设施;若过低,则无法满 足灌溉高峰期的用水需求,导致灌溉用水无法及时、准 确地输送到农田。水位控制参数设计不合理也会带来严 重问题,在某些灌区,由于水力计算不准确,渠道在灌 溉高峰期经常出现水位过高或过低的情况[1]。水位过高可 能引发渠道边坡滑坡、渗漏加剧等问题,影响渠道结构 安全: 水位过低则会使灌溉水量不足, 农作物得不到充 分灌溉,影响其正常生长和产量。

1.2 衬砌材料选择不当

渠道衬砌是减少渠道渗漏、提高输水效率的关键措施,但在实际工程中,衬砌材料的选择常常缺乏科学依据。一些灌区在选材时,没有充分考虑材料的性能、成本、耐久性以及与当地环境的适应性等因素。例如,部分灌区为了降低成本,选用了质量不佳的衬砌材料。这些材料可能在生产过程中就存在质量缺陷,如混凝土的

配比不合理、土工膜的厚度不均匀等。在使用过程中,质量不佳的衬砌材料容易出现各种问题。裂缝是常见的问题之一,由于材料的抗拉强度不足或受到温度变化、地基沉降等因素的影响,衬砌表面会产生裂缝。裂缝的出现会破坏渠道的防渗体系,导致水资源渗漏增加。脱落问题也较为严重,当衬砌材料与渠道基层的粘结力不足时,在长期水流冲刷和冻融循环的作用下,衬砌材料可能会从渠道表面脱落。这不仅增加了渠道的维护成本,需要频繁进行修补和更换,还严重影响了渠道的防渗效果,使得大量的灌溉用水在输送过程中白白浪费。

1.3 断面形式不合理

传统渠道断面形式较为单一,通常采用梯形或矩形断面,这种设计未能充分考虑不同地段的实际情况。在地形变化较大的地区,单一的梯形或矩形断面难以适应地形的起伏。例如,在山区灌区,地形坡度较大且变化频繁,采用传统的梯形断面可能会导致渠道在某些地段过深或过浅。过深的渠道会增加土方开挖量和工程成本,同时也会给施工带来困难;过浅的渠道则无法满足过水要求,容易发生漫堤现象。单一的断面形式在调节水流方面也存在明显不足。在渠道转弯处或坡度变化处,水流容易产生不均匀现象,形成漩涡和湍流。这些不均匀的水流会对渠道边坡和底部造成冲刷破坏,缩短渠道的使用寿命。此外,不合理的设计断面还可能增加渠道的占地面积。在一些土地资源紧张的地区,过大的渠道占地面积会浪费宝贵的土地资源,影响土地的合理利用和农业的可持续发展。

2 灌区渠道设计优化策略

2.1 精准水力计算

为了提高渠道水力计算的准确性,必须充分考虑实际工程条件,积极采用先进的水力计算方法和模型。数值模拟技术作为一种强大的工具,能够对渠道水流进行

三维模拟。在建立数值模型时,需要收集详细的地形数 据,通过高精度的测量仪器,如全站仪、GPS等,获取 渠道沿线的地形坐标和高程信息,确保模型能够准确反 映地形的起伏变化。同时, 要考虑土壤的物理特性, 包 括土壤的颗粒组成、孔隙率、渗透系数等,这些数据可 以通过土壤取样和实验室分析得到。水流状态方面,要 详细分析水流的流速分布、湍流强度、水流与渠道边界 的相互作用等因素。利用数值模拟软件对渠道水流进行 详细模拟后,可以精确分析水流的速度、压力、水位等 参数的变化规律。例如,通过模拟可以清晰地看到水流 在不同断面形状和坡度下的速度分布情况, 找出速度过 快或过慢的区域, 为渠道的断面设计提供依据。压力参 数的模拟可以帮助判断渠道是否存在压力集中或过低的 情况,从而避免渠道结构因压力异常而受损[2]。水位变 化模拟可以预测在不同流量条件下水位的变化过程, 为 渠道的水位控制提供科学依据。结合实地测量数据对计 算模型进行校准和验证是确保计算结果可靠性的关键步 骤。在实际渠道中合理布置测量点,测量点应涵盖渠道 的不同断面、不同位置,包括直线段、弯曲段、坡度变 化段等。使用先进的测量设备,如流速仪、水位计等, 获取水流的速度、水位等实测数据。将实测数据与模拟 结果进行对比分析, 若发现两者存在较大偏差, 就需要 不断调整模型参数,如湍流模型的选择、边界条件的设 定等,直到模拟结果与实测数据相符。通过精准的水力 计算,可以合理确定渠道的断面尺寸、坡度以及水位控 制要求,从而提高渠道的输水能力和稳定性。

2.2 科学选择衬砌材料

衬砌材料的选择需要综合考虑多方面因素。首先, 要根据渠道的输水流量、水质条件以及土壤特性等进行 选择。对于输水流量较大、水质较差的渠道,混凝土 衬砌材料是一种理想的选择。混凝土具有强度高、防渗 效果好等优点,能够承受较大的水压力和外部荷载,有 效防止水资源的渗漏。同时,混凝土对水质的适应性较 强,不易被水中的化学物质腐蚀。例如,在一些工业废 水排放区域的灌区渠道,水中含有大量的酸性或碱性物 质,混凝土衬砌能够经受住这些恶劣水质的长久考验。 而土工膜衬砌材料则具有柔性好、适应性强等特点,适 用于地形复杂、土壤条件较差的渠道。在一些山区灌 区, 地形起伏较大, 渠道需要随着地形蜿蜒曲折, 土工 膜可以很好地适应这种地形变化,紧密贴合渠道表面, 不会因地形的不规则而产生裂缝或脱落。而且, 山区土 壤的渗透性通常较强, 土工膜能够有效阻止水分渗漏, 提高水资源的利用效率。其次,要考虑材料的经济性和 可获取性。在满足工程要求的前提下,尽量选择成本较低、来源广泛的材料。例如,在一些地区,当地有丰富的石材资源,采用石料衬砌不仅经济实惠,而且能够充分利用本地资源,减少材料运输成本。石料衬砌具有一定的强度和防渗性能,对于一些输水流量较小、水质较好的渠道是一种可行的选择。此外,还应关注材料的环保性能。随着环保意识的不断提高,选择环保型衬砌材料已成为渠道设计的发展趋势。一些新型的生态衬砌材料已成为渠道设计的发展趋势。一些新型的生态衬砌材料,如生态混凝土、可降解土工膜等,不仅具有良好的防渗性能,还能与周边环境相融合,促进生态系统的平衡。这些材料在使用寿命结束后能够自然分解,不会对土壤和水源造成污染,符合可持续发展的要求。

2.3 优化断面形式

针对不同地段的地形、地质和水文条件, 应采用多 样化的断面形式。在地形起伏较大的地区, 弧形底梯形 断面和U形断面具有独特的优势。弧形底梯形断面能够 更好地适应地形变化, 其弧形底部设计巧妙地解决了传 统梯形断面在地形起伏时需要大量土方开挖的问题。在 山区渠道建设中,采用弧形底梯形断面可以顺着山体的 自然坡度进行设计,减少对原始地形的破坏,降低土方 开挖量和工程成本。同时, 弧形底部可以使水流更加顺 畅,水流在弧形底部能够形成稳定的水流层,降低水流 对渠道底部的冲刷破坏。U 形断面则以其水流条件好、 占地面积小等优点受到青睐。U形断面的水流接近有压 流,水流速度均匀,能够减少水头损失,提高输水效 率。在相同过水能力的情况下, U 形断面的水力半径较 大,水流阻力较小,使得水流能够以较低的能量消耗完 成输送任务。而且, U 形断面的占地面积相对较小, 这 对于土地资源紧张的地区尤为重要。在城市周边的灌区 或人口密集地区的渠道建设中,采用 U 形断面可以节 省宝贵的土地资源,提高土地利用效率。在土壤条件较 差、容易发生渗漏的地区,可采用复合式断面,即在渠 道底部和边坡采用不同的防渗材料进行衬砌。在渠道底 部采用混凝土衬砌,以提高防渗性能和强度;在边坡采 用土工膜衬砌, 以适应边坡的变形, 提高渠道的整体稳 定性[3]。此外,还可以通过优化断面尺寸和形状,提高 渠道的输水效率,减少水头损失。根据水力学原理,水 流存在一个经济流速范围,在这个范围内,水流的能量 损失最小,输水效率最高。设计人员可以通过计算和模 拟,确定适合特定渠道的最佳宽度和深度比例,使水流 在最佳流速范围内流动,既能保证输水能力,又能降低 能耗。

3 案例分析:新疆北疆奎屯灌区干渠设计优化

3.1 项目背景

奎屯灌区位于新疆天山北麓的奎屯、乌苏、独山子 "金三角"地带,地处准噶尔盆地西南缘的奎屯河流域 中下游冲积平原。该区域气候干旱,年降水量不足200毫 米,蒸发量却高达2000毫米以上,农业灌溉高度依赖引 水工程。灌区总灌溉面积达113.13万亩,覆盖7个乡镇, 是新疆重要的棉花、小麦等作物生产基地。然而,其主 干渠始建于1959年,全长22.068公里,为土渠结构且未采 取任何防渗措施。经过50余年的运行,渠道渗漏问题日 益严重,年渗漏损失水量占引水量的30%以上,导致下游 灌溉水量不足,同时引发两侧耕地地下水位上升,土壤 次生盐渍化面积扩大,部分农田被迫弃耕,严重制约了 区域农业可持续发展。

3.2 核心问题

奎屯灌区干渠面临的问题具有典型性,主要体现在 三个方面:一是渗漏与效率低下:土渠未防渗,年渗漏 损失水量巨大,灌溉水利用系数低。二是冻胀破坏:渠 系地层以粉土及粉砂为主,含盐量高、含水量大,冬季 冻胀导致渠道坍塌、淤积。三是工程老化:渠道及建筑 物破损严重,过水能力不足,无法满足灌溉需求。

3.3 设计优化方案

针对上述问题,设计团队从工程级别、断面形式、防渗抗冻及水力计算等方面进行了系统性优化:

3.3.1 工程级别与标准:

根据《灌溉与排水工程设计规范》,干渠定为4级工程,临时建筑物为5级。设计标准兼顾干旱区特点,灌溉设计保证率取75%,抗震设防烈度按W度设计。渠道纵坡结合地形调整为0.00037~0.00092,既保证水流平稳,又避免冲刷或淤积。

3.3.2 渠道横断面优化:

传统梯形断面在冻胀作用下易产生应力集中,导致 边坡破坏。优化后采用弧形底梯形断面,渠底弧形半径 根据渠深确定,既分散冻胀应力,又减少水流阻力。 边坡系数内坡取1.75、外坡取1.5,适应粉土地质特性。 渠堤宽度右堤设为4米(便于机械通行与管理),左堤2 米,满足运行安全需求。

3.3.3 防渗与抗冻胀措施:

防渗材料选用现浇混凝土板(C20强度、F200抗冻标号),厚度12~15厘米,边坡与渠底整体浇筑,减少接缝渗漏。针对冻胀问题,渠底采用弧形现浇板,避免直角结构应力集中;边坡铺设复合土工膜(一布一膜),阻断水分入渗通道;渠床处理时清除表层30厘米松散土,换填戈壁料并压实,降低土壤含水量。此外,在渠道沿线设置排水暗管,进一步降低地下水位,减轻冻胀压力。

3.4 实施效果

优化后的干渠于2015年建成投运,经多年运行监测,效果显著:防渗改造后,渠道水利用系数显著提升,年节水效益显著。弧形底断面与复合土工膜结合,冻胀破坏率大幅降低,渠道使用寿命延长。渠道过水能力提升,灌溉周期缩短,耕地盐渍化问题缓解,作物产量提高。工程投资通过节水效益和农业增产回收,同时降低农民灌溉成本,促进区域农业可持续发展。

结束语

未来,随着科技的不断进步和节水理念的深入人心,灌区渠道设计优化将面临更多的机遇和挑战。一方面,应进一步加强水力计算技术、新型衬砌材料和智能化监测技术的研究与应用,不断提高渠道设计的科学性和精准性。另一方面,要注重渠道设计与生态环境的协调发展,探索更加绿色、可持续的渠道建设模式。同时,还应加强灌区节水改造工程的后期管理和维护,确保渠道长期稳定运行,实现灌区水资源的高效利用和可持续发展。

参考文献

[1]姚治国.大中型灌区节水改造中防渗渠道断面优化设计[J].陕西水利, 2020(4):75-76, 79.

[2] 苏桐.渠道防渗节水灌溉技术应用探讨[J].南方农业, 2019, 13(17):174-175.

[3]何丽杰.不同结构型式的小型农田防渗渠道优选研究[D].沈阳:沈阳农业大学,2019.

[4]王峰, 宁纪明.做好大型灌区续建配套与节水改造, 提高管理水平和管理效率[J].工程技术研究, 2019, 4 (22): 185-186.