浅谈水利工程堤防渗漏处理办法

孙剑峰 吴兆飞 盐城市水利勘测设计研究院有限公司 江苏 盐城 224000

摘 要:本文围绕水利工程堤防渗漏处理展开探讨,先阐述堤防渗漏的概念、主要类型及危害表现,再详细分析渗漏检测、防渗加固、排水疏导等技术要点,进而说明不同渗漏部位、程度及地质条件下的技术应用场景,最后探讨技术组合应用策略与发展趋势。通过系统梳理相关技术与应用,为堤防渗漏处理提供全面思路,助力提升水利工程堤防的安全性与稳定性。

关键词: 堤防渗漏; 处理技术; 应用场景; 发展趋势

引言: 堤防是水利工程的重要组成部分,其安全直接关系到工程效益与周边区域稳定。堤防渗漏作为常见病害,由多种因素引发,会削弱堤防结构稳定性,甚至导致坍塌等严重后果。研究堤防渗漏处理办法,明确各类技术的应用要点与场景,对保障堤防安全运行、延长工程寿命具有重要意义。本文围绕堤防渗漏处理展开分析,为相关实践提供思路。

1 水利工程堤防渗漏基础认知

1.1 堤防渗漏概念界定

堤防渗漏指水利工程中的堤防结构在水体压力作用下,出现水体非正常渗透的现象。这类渗透突破了堤防自身的防渗能力,通过堤身、堤基或堤岸结合部等薄弱环节发生。渗透过程与堤防材料性质、结构完整性及作用水头密切相关。当堤防存在裂缝、孔隙或抗渗性能不足时,水体便会沿这些通道流动,形成渗漏。渗漏并非单一瞬间的现象,而是随时间推移可能逐渐发展的过程,其严重程度会受水文条件和堤防状况变化影响[1]。不同季节的水位变化会改变渗透压力,进而影响渗漏的范围和程度,水位升高时渗漏可能加剧,水位下降时渗漏程度可能有所缓解。长期干旱后突降暴雨,堤防土体因干湿交替产生裂缝,也可能诱发新的渗漏点。

1.2 堤防渗漏的主要类型

堤身渗漏多因筑堤材料压实不够或存在裂缝,水体直接透过堤身形成渗透通道。此类渗漏常表现为堤身表面湿润、出现渗水点,若持续发展可能导致堤身土体软化。堤基渗漏源于堤基土层渗透性强或存在透水夹层,水体从堤防渗流至堤后,引发地基淘刷。堤岸结合部渗漏发生在堤防与岸坡连接部位,由于施工时结合不够紧密,形成渗水通道,水流在此处易造成冲刷,加剧渗漏程度。管涌型渗漏是渗透水流将堤基或堤身中的细颗粒带走,形成管状通道,这类渗漏隐蔽性较强,对堤防结

构危害较大。散浸型渗漏则表现为堤防背水坡大面积湿润,伴有轻微渗水,多因堤防防渗性能整体不足所致,在持续高水位作用下,这类渗漏可能向更严重的形式转化。因地震等外力作用导致堤防结构出现裂缝,也可能形成新的渗漏类型,其渗漏路径往往更为复杂。

1.3 堤防渗漏的危害表现

渗漏会降低堤防结构的稳定性,使堤身土体含水量增加,抗剪强度下降,可能引发滑坡或坍塌。持续渗漏会冲刷堤基土壤,带走细小颗粒,导致地基出现空洞,进而使堤防沉降变形。渗漏水体若携带泥沙,会在堤后形成积水区,破坏周边土地的正常使用功能。当渗漏量较大时,可能影响工程的蓄水能力,降低水利工程的运行效率。严重的渗漏若未及时处理,可能在洪水等极端条件下导致堤防溃决,威胁周边区域的安全。渗漏还会加速堤防材料的老化,缩短工程的使用寿命,增加维护成本。渗漏产生的水流会对堤防内部的钢筋等金属构件造成腐蚀,削弱其承载能力,进一步加剧堤防的损坏。渗漏水体若含有污染物,还可能污染周边地下水,影响水资源的质量。

2 堤防渗漏处理技术要点

2.1 渗漏检测技术要点

渗漏检测需结合多种技术手段精准定位渗漏点。渗流监测通过在堤防不同部位布设监测仪器,追踪水体流动轨迹,判断是否存在异常渗流通道。监测仪器需与堤防结构适配,避免因安装不当影响检测精度。温度监测利用渗漏水体与周围土壤的温度差异,通过红外测温设备识别温度异常区域,间接确定渗漏位置^[2]。检测时需避开日照、气温等环境因素对温度场的干扰,阴雨天检测需做好设备防水保护。探地雷达向堤防内部发射电磁波,根据反射波的变化分析堤身结构是否存在空洞或裂缝,进而推断渗漏路径。雷达频率的选择需根据堤防厚

度和材质调整,确保探测深度与分辨率匹配。同位素示踪技术将特定示踪剂注入水体,通过监测示踪剂的扩散范围和速度,确定渗漏的流量和方向。示踪剂的种类需根据水体性质选择,避免与水中物质发生化学反应。表面观察法通过巡查堤防表面是否出现湿润带、渗水点或塌陷坑,为进一步检测提供线索。巡查需覆盖堤防全段,重点关注历史渗漏区域,雨后巡查应加大频次。检测过程需综合不同技术的结果,排除干扰因素,提高渗漏定位的准确性。

2.2 防渗加固技术要点

防渗加固技术旨在构建连续的防渗屏障, 阻止水体 渗透。充填灌浆通过钻孔将水泥浆液或黏土浆液压入堤 身裂缝或孔隙,浆液凝固后形成密实结构,阻断渗水 通道。灌浆压力需根据堤身材料强度控制, 防止压力过 大造成堤防变形,浆液浓度需随裂缝大小逐步调整。防 渗墙施工采用深层搅拌或高压喷射注浆工艺, 在堤身或 堤基中形成墙体,墙体材料需具备良好的抗渗性和耐久 性,与周边土体紧密结合。墙体深度需穿透透水层到达 隔水层,确保防渗彻底。复合土工膜铺设在堤防迎水 面,通过锚固固定形成防渗层,膜体接缝处采用热熔焊 接确保密封, 防止水体从接缝处渗漏。膜体铺设需避开 尖锐物体,避免施工过程中造成破损,铺设后需覆盖保 护层防止紫外线老化。劈裂灌浆利用高压将浆液注入堤 身, 使堤身沿预定方向劈裂并填充浆液, 形成连续的防 渗帷幕。灌浆顺序需从堤身两侧向中间推进,逐步封闭 渗漏通道。锚固技术通过植入锚杆或锚索,增强堤防边 坡的稳定性,减少因结构变形产生新的渗漏通道。锚杆 深度需达到稳定土层,确保锚固力满足设计要求。

2.3 排水疏导技术要点

排水疏导技术通过加速水体排出,降低堤防内部的 渗透压力。反滤层设置在堤防背水侧,采用砂石等材料 按颗粒级配分层铺设,允许水体通过但阻止土壤颗粒 流失,避免渗透水流对堤身造成冲刷。每层材料的厚度 需均匀,确保透水性一致,铺设时需避免杂物混入。排 水孔布置在堤身或堤基中,将渗透水收集后导出堤外, 孔内需设置滤管防止堵塞。排水孔的间距和角度需根据 渗透水量计算确定,保证排水效率,孔口需高出地面以 防雨水倒灌。减压井适用于堤基渗漏处理,通过井管将 地下渗水引出,降低堤基中的承压水水头,减少管涌风 险。井管滤料的选择需与堤基土壤颗粒匹配,防止滤料 被水流带走,井口需设置保护装置防止杂物落入。导渗 沟沿堤防背水坡开挖,沟内填充透水性材料,将坡面渗 水引入集水沟排出,缓解堤身浸润状况。沟底需设置坡 度,确保积水能快速流向出口,沟壁需采取防护措施防止坍塌。排水系统的设计需与防渗措施配合,避免排水过程中引发新的渗透问题,确保排水畅通且不影响堤防结构稳定。

3 堤防渗漏处理技术应用场景

3.1 不同渗漏部位的技术应用

堤身渗漏可采用充填灌浆技术封闭裂缝, 配合复合 土工膜铺设增强表面防渗能力。灌浆时需根据裂缝深度 调整浆液浓度,浅部裂缝用稀浆填充,深部裂缝逐步增 加浓度。若堤身出现散浸,可在背水坡设置导渗沟加速 排水,降低堤身浸润程度[3]。导渗沟间距需根据渗漏范 围确定,确保排水均匀。堤基渗漏需结合帷幕灌浆形成 防渗屏障,同时布置减压井降低承压水水头,减少管涌 风险。减压井深度需穿透透水层,确保有效降低水头。 堤岸结合部渗漏需强化锚固处理,通过注浆填充缝隙, 再铺设防渗材料加强连接部位的密封性。锚固点间距需 根据边坡坡度调整,坡度较陡处加密布置。管涌发生在 堤基时,可铺设反滤层阻止土壤颗粒流失,采用排水孔 将渗水导出,避免管涌通道扩大。反滤层铺设需分层压 实,每层厚度保持一致。堤防顶部渗漏需平整表面并铺 设防渗层,防止雨水下渗,必要时增设截水沟引导水流 远离堤防。截水沟坡度需与地形适配,确保排水通畅。

3.2 不同渗漏程度的技术应用

轻微渗漏可通过表面修补处理,采用水泥砂浆封堵细小裂缝,配合定期巡查监测渗漏变化。修补前需清理裂缝内杂物,保证砂浆与堤身结合紧密。中等渗漏需结合防渗与排水技术,对堤身进行局部灌浆,同时设置导渗沟降低渗透压力,防止渗漏加剧。灌浆范围需超出渗漏区域边缘,形成封闭圈。严重渗漏需启动综合处理方案,采用防渗墙截断渗漏通道,配合抽水降压减少水体对堤防的渗透作用,同步加固堤防结构防止变形。防渗墙施工需连续作业,避免出现施工缝。管涌初期可投放反滤料压制涌水,再逐步构建反滤层和排水系统,控制险情扩散。反滤料投放需沿涌水点周边均匀分布,避免集中堆积。大面积散浸需铺设土工膜防渗,加密排水孔,加快堤身水分排出,恢复堤防稳定性。土工膜铺设需拉紧绷平,避免褶皱影响防渗效果。

3.3 不同地质条件下的技术应用

砂质土壤地基渗漏处理需注重反滤措施,采用砂石 反滤层配合排水孔,防止渗透水流带走细颗粒。反滤层 颗粒级配需与地基土壤匹配,避免颗粒堵塞或流失。 黏土地基渗漏可采用劈裂灌浆技术,利用浆液填充土壤 裂隙,形成连续防渗体。灌浆压力需控制在土壤劈裂极 限内,避免过度破坏土体结构。岩基渗漏需通过帷幕灌浆封堵岩层裂隙,灌浆材料选择需适应岩石孔隙特征,确保浆液充分填充。对于宽裂隙可掺入细骨料,提高封堵效果。软土地基渗漏处理需先加固地基,采用深层搅拌形成复合地基,再实施防渗处理,避免堤防沉降引发新的渗漏。搅拌桩间距需根据地基承载力要求确定,确保加固均匀。土砂混合地基渗漏需结合防渗墙与排水系统,墙体深入隔水层阻断横向渗透,排水设施加速纵向排水,平衡地基受力状态。防渗墙材料需兼具抗渗性和柔韧性,适应地基不均匀沉降。高水位地区的堤防渗漏处理需强化迎水面防渗,采用复合土工膜与锚固技术结合,提高堤防抗渗能力。锚固深度需达到稳定土层,防止土工膜被水压掀起。

4 堤防渗漏处理技术的优化与发展

4.1 技术组合应用策略

技术组合需根据渗漏特征形成互补体系。检测技术 与处理技术联动,通过探地雷达定位渗漏点后,立即采 用针对性灌浆处理,减少定位与施工的间隔时间。防渗 技术与排水技术结合, 在设置防渗墙阻断渗漏的同时, 同步布置排水孔,降低墙后渗透压力,避免墙体承受过 大水压[4]。浅层处理与深层处理衔接,表面铺设土工膜防 渗的同时,对堤基实施帷幕灌浆,形成立体防护。临时 措施与永久措施配合,管涌发生时先投放反滤料控制险 情,稳定后再构建永久性反滤层和排水系统。不同材料 技术搭配使用,复合土工膜与灌浆技术结合,膜体阻断 表层渗水,灌浆填充深层裂隙,提升整体防渗效果。技 术组合需考虑施工顺序, 先完成排水设施再进行防渗处 理,避免防渗后水体无法排出导致内部压力升高。对于 复杂渗漏场景,可叠加多种技术组合,先通过反滤层稳 定地基,再用防渗墙阻断主通道,最后以导渗沟辅助排 水,形成多层次处理体系。技术组合的效果需通过现场 监测验证,根据渗漏变化动态调整技术搭配,确保处理 措施始终适应实际情况。

4.2 技术发展趋势展望

技术向高效化方向发展,新型灌浆材料凝结时间更短,可快速形成防渗体,适应紧急渗漏处理需求。检测

技术精度提升,无人机搭载红外设备可快速扫描堤防表面,结合地面传感器数据,提高渗漏定位效率。材料技术革新,新型土工合成材料具备更强的抗老化和抗穿刺性能,延长使用寿命。智能化技术应用加深,传感器网络实时监测堤防渗透压力和变形数据,数据传输至控制系统后自动调整排水设备运行状态。绿色环保技术推广,生物降解材料用于临时防渗,减少对生态环境的影响。施工技术机械化程度提高,小型化专用设备可适应复杂地形,降低人工操作强度。技术向综合化发展,单一设备集成检测、灌浆、排水等多种功能,提升现场作业效率。未来技术将更注重与生态修复结合,在防渗加固的同时改善堤防周边水土环境,实现工程安全与生态保护的协调。新型监测技术可实现对堤防内部应力变化的实时追踪,为技术调整提供更精准的依据,进一步提升渗漏处理的前瞻性和有效性。

结束语

水利工程堤防渗漏处理涉及多方面技术的综合运用,从基础认知到技术要点,再到应用场景与发展趋势,形成了一套相对完整的体系。合理运用检测、防渗、排水等技术,并根据实际情况进行组合优化,能有效应对不同类型的渗漏问题。随着技术的不断发展,高效化、智能化、绿色化的处理手段将进一步提升堤防渗漏处理的效果。持续关注技术革新与实践应用,可更好地保障堤防安全,为水利工程的可持续发展奠定基础。

参考文献

- [1]姚立夫,聂齐麟.浅谈水利工程堤防渗漏处理办法 [J].治淮,2024,(11):65-67.
- [2]邓建君,郭园园.水利工程常见渗漏问题及渗控措施技术分析[J].城市建设理论研究(电子版),2024,(27):202-204.
- [3]贾明.水利工程技术中土质堤防渗漏成因及防治措施[J].中国高新科技,2024,(10):152-154.
- [4]刘丹丹.水利工程技术中土质堤防渗漏成因及防治措施探讨[J].中小企业管理与科技(下旬刊),2021(07):176-177.