给排水建筑给排水节能节水技术探究

陈 强 杭州地铁运营有限公司 浙江 杭州 310000

摘 要:建筑给排水节能节水是实现建筑可持续发展的关键。通过采用节水型卫生器具、雨水回收、中水回用等技术,可减少水资源消耗与污水排放。变频调速供水、太阳能热水系统等节能技术,能降低能源损耗。智能化技术、绿色材料、可再生能源结合及系统集成优化是其发展趋势,这些技术与措施协同作用,可形成水资源循环利用闭环,提升建筑能效,实现经济效益与环境效益统一。

关键词:建筑给排水;节能节水;技术

引言

随着建筑行业绿色发展需求提升,给排水系统的节能节水愈发重要。当前,传统给排水模式存在水资源浪费、能源消耗大等问题。本文围绕建筑给排水节能节水展开探究,分析其重要性,阐述节水型卫生器具、雨水回收利用等技术,探讨智能化、绿色材料应用等发展趋势,旨在为推动建筑给排水节能节水技术发展提供参考,助力建筑可持续发展。

1 建筑给排水节能节水的重要性

建筑给排水系统的节能节水设计, 是实现建筑整体 能效提升的关键环节,其意义不仅在于资源的合理利 用, 更在于构建与自然和谐共生的人居环境。通过优化 给排水系统的运行模式,能够在满足建筑功能需求的前 提下, 显著降低能源消耗与水资源浪费, 形成可持续的 建筑运营生态。节水技术的应用需从源头把控,例如采 用节水型卫生器具可减少无效用水, 而雨水回收与中水 回用系统则能拓展水资源的利用维度,将非饮用水需求 从传统供水系统中剥离,从而降低对市政供水的依赖。 这种多源供水模式的构建, 既能减少新鲜水资源的消 耗,又能降低污水排放带来的环境压力,形成水资源循 环利用的闭环。节能设计应贯穿给排水系统的全流程, 水泵的变频调速技术可根据实际用水量动态调节运行功 率,避免恒速运行造成的能源损耗;合理的管网布局能 减少水头损失,降低输送过程中的能量消耗;太阳能热 水系统与建筑给排水的结合,则能替代传统能源加热方 式,利用可再生能源满足热水需求,从能源输入端实现 节能目标。系统的协同优化是提升节能节水效果的核 心,将节水措施与节能技术有机融合,例如中水回用系 统与变频水泵的联动控制,可根据中水水量动态调整供 水压力,避免能源与水资源的双重浪费。通过智能监测 系统实时感知用水状态,对异常消耗进行及时干预,确 保系统始终处于高效运行状态,这种智能化的管理模式,能使节能节水措施的效能得到最大化发挥。建筑给排水的节能节水并非孤立存在,而是与建筑的整体设计、使用场景深度关联,通过技术创新与系统整合,既能提升建筑的运行效率,又能引导用户形成绿色用水习惯,最终实现经济效益与环境效益的统一,为建筑的可持续发展注入持久动力。

2 建筑给排水节能节水技术

2.1 节水型卫生器具应用技术

在节水型卫生器具领域, 前沿技术不断涌现, 重塑 用水模式。智能坐便器突破传统,采用精准水量调控与 智能感应技术,依据排泄物的类别、重量,运用内置传 感器与算法精确匹配冲水量,大幅降低不必要的水耗。 部分智能坐便器还配备水质净化模块,对进水进行多层 过滤,不仅确保用水洁净,还能减少因水质问题导致的 器具清洁频次,间接节水。淋浴系统引入动态水流调节 技术,通过人体姿态识别与流量传感器,实时感知使用 者动作,在冲洗关键部位时增大水流,其余时段自动调 小,配合新型节水喷头,利用空气注入技术使水珠饱满 且覆盖面积更广,在减少水量的同时提升洗浴体验。洗 手盆水龙头搭载智能节水芯片,能根据使用场景(如洗 手、接水等)自动调整水流形态与流速,结合触摸式或 感应式开关, 杜绝长流水现象, 且其内部采用新型陶瓷 阀芯,减少漏水隐患,延长使用寿命。这些创新技术从 多维度优化用水细节,以智能感知与精准控制为核心, 颠覆传统器具的用水逻辑,将节水效能提升至新高度, 为建筑节水体系注入强大动力[1]。

2.2 雨水回收利用技术

地铁车站空间独特,其雨水回收利用技术具有鲜明 特色。车站屋面与出入口设置高效集雨装置,通过特殊 导流槽和集水板科学布局,精准引导水流,优化雨水收 集路径, 小雨量时也能有效汇集。初期径流弃流运用智 能控制,水质传感器实时监测雨水,污染物浓度超标时 自动切换弃流通道,保证进入处理系统的雨水清洁。处 理环节采用模块化、小型化净化设备,适应车站有限空 间。如集成超滤膜组件与活性炭吸附装置,高效去除杂 质、有机物和微生物,且设备能依水量自动调节参数, 降低能耗。回收水用途广泛,用于车站卫生间冲厕、绿 化灌溉及设备冷却等。卫生间采用独立中水供水管道, 配备智能节水器具,感应式水龙头与智能冲厕设备按使 用频率精准控水;绿化灌溉结合土壤湿度传感器与智能 喷灌系统, 实现按需供水。利用地铁车站通风系统余热 对回收水适度预处理,减少后续处理能耗。通过这些措 施,形成一套高效、节能且适配地铁运营环境的雨水回 收利用体系,从集雨、弃流、处理到应用,各环节紧密 配合, 充分发挥车站空间优势, 充分挖掘地下空间的水 资源潜力。

2.3 中水回用技术

地铁车站内的中水回用技术正朝着深度处理与智能 化方向迈进。在污水收集方面,采用分区收集与智能监 测系统,对不同区域(如卫生间、盥洗室等)的污水 进行分类收集,并通过流量与水质传感器实时掌握污水 产生量与水质变化,为后续处理提供精准数据。处理工 艺上,创新地将移动床生物膜反应器与高级氧化技术相 结合,移动床生物膜反应器利用悬浮生物载体高效降解 有机物,高级氧化技术则进一步去除难降解污染物与微 量有害物质, 使中水水质大幅提升, 满足更多回用场景 需求。处理设备实现模块化、智能化集成,可根据车站 客流量与污水量自动调整运行工况,降低能耗与维护成 本。中水回用范围不断拓展,除传统的冲厕、绿化外, 还用于车站内的景观水体补水、道路冲洗, 甚至部分非 关键设备的冷却用水。回用系统通过智能阀门与管网压 力监测,实现中水的精准分配与高效输送,避免管网泄 漏与压力失衡导致的水资源浪费。未来,随着技术发 展,有望将中水回用与车站的能源管理系统联动,利用 中水的温差进行能量回收,进一步提升地铁车站的资源 利用效率与绿色运营水平[2]。

2.4 变频调速供水技术

变频调速供水技术通过实时感知管网压力与流量变化,动态调节水泵运行频率,使供水能力与用水需求始终保持匹配,彻底改变传统恒速水泵的粗放运行模式。系统中的压力传感器持续监测管网末端压力,将信号传输至变频控制器,控制器根据设定压力值与实际监测值的偏差,自动调整电机供电频率,当用水量减少时降低

频率使水泵转速下降,减少出水量的同时降低能耗,用水量增加时则提高频率提升供水能力,确保管网压力稳定在合理范围。水泵机组采用多台并联设计,通过逻辑控制实现软启动与交替运行,避免单台设备长期工作导致的磨损不均,延长使用寿命的同时减少维护成本,管网中的水流状态通过水力模型模拟优化,消除局部湍流与滞流现象,降低管道阻力损失,使水泵的输出能量更多转化为有效扬程。该技术的创新点在于引入人工智能算法,通过分析历史用水数据预测短期需求,提前调整水泵运行参数,实现从被动响应到主动调控的转变,配合管网泄漏检测功能,可在压力异常时快速定位漏点,减少因管道破损造成的水资源浪费,使供水系统兼具节能性与可靠性。

3 建筑给排水节能节水技术的发展趋势

3.1 智能化技术的广泛应用

(1)智能传感网络将渗透给排水系统的各个节点, 流量传感器与压力变送器组成实时监测矩阵, 通过物联 网技术构建动态水力模型,能够精准捕捉管网中的流量 波动与压力变化,结合机器学习算法识别用水模式的 周期性特征,实现用水需求的超前预判,使供水系统的 运行参数调整更具前瞻性,避免因瞬时负荷变化导致的 能源与水资源浪费。(2)智能控制终端与用水器具形 成联动闭环, 红外传感精准捕捉人体位置与动作, 超声 波探测技术深度感知用水场景与需求, 二者融合应用, 能深度分析用户行为特征, 进而自动调节出水量与水流 形态。例如淋浴系统能通过人体感应自动切换预冲、正 常使用与关闭模式,坐便器则依据污物量动态调整冲水 量。这种自适应调节机制既保证使用体验,又消除了人 为操作带来的用水冗余。(3)数字孪生技术的引入将实 现给排水系统的全生命周期模拟,通过构建物理系统的 虚拟镜像,可对管网老化、设备衰减等因素进行提前推 演,结合实时运行数据优化维护周期,在故障发生前完 成预防性检修,同时通过虚拟调试验证节能节水方案的 可行性,避免实体改造带来的资源消耗,使系统始终保 持最优运行状态。

3.2 绿色环保材料的推广使用

(1)新型复合管材将突破传统金属与塑料的性能局限,纳米改性聚乙烯材料通过分子结构优化提升抗腐蚀与抗老化性能,内壁特殊涂层可降低水流阻力系数,减少输送过程中的水头损失,同时材料本身具备可降解特性,在使用寿命终结后能自然融入环境,避免传统管道废弃后造成的土壤污染,这种全生命周期的环保属性使其成为管网改造的核心选择。(2)水处理滤料将向

功能性复合方向发展,生物活性炭与石墨烯复合材料的结合,既能通过活性炭的多孔结构吸附有机物,又能利用石墨烯的导电性实现电化学杀菌,替代传统氯消毒工艺减少消毒副产物的生成,同时滤料的再生性能得到强化,通过物理冲洗即可恢复吸附能力,降低更换频率带来的材料消耗与处置压力。(3)卫生器具的制造材料将实现生态化革新,植物基生物塑料替代传统石油基材料制作器具外壳,其表面纳米级抗菌层可减少清洁剂的使用需求,而陶瓷部件则通过添加硅藻土实现自洁功能,水流冲刷即可去除表面污渍,这种材料创新不仅降低生产过程中的碳排放,更从使用环节减少化学物质对水环境的影响^[3]。

3.3 可再生能源与给排水系统的结合

(1) 地源热泵与热水供应系统的深度耦合将突破地 域限制,通过埋地换热器吸收土壤中的恒定热能,结合 热泵机组的能量提升特性为生活热水加热,系统可根据 热水用量动态调节换热面积与热泵运行功率, 在满足供 水温度的同时将能源转换效率维持在高位, 替代传统燃 气或电加热方式,从能源源头减少碳排放,尤其适用于 地下水文条件复杂的城市建筑。(2)光伏直驱技术将重 塑给排水系统的能源供给模式,分布式光伏板产生的电 能直接驱动变频水泵运行,通过最大功率点跟踪算法实 时匹配光照强度与水泵功率,避免电能转换与存储过程 中的能量损耗,多余电能可用于水处理设备的运行,形 成"发电-用水-处理"的能源自给闭环, 使系统在光照充 足时段实现近零能耗运行。(3)水力发电装置的集成应 用将实现能量回收, 在高层建筑的排水立管中安装微型 水轮机,利用排水过程中的势能差驱动发电,产生的电 能用于补充管网监测设备的能耗,同时水轮机的阻尼特 性可稳定排水流速,减少管道振动与噪音,这种"变废 为能"的设计使排水系统从能源消耗端转变为能源产出 端,提升建筑整体的能源自给率。

3.4 系统集成化与优化设计

(1) 多水源供水系统的协同调度将实现水资源的梯级利用,雨水回收、中水回用与市政供水系统通过智能切换装置形成联动网络,根据水质指标与用水需求自动

匹配供水路径, 例如雨水经初步处理后优先用于景观补 水,深度处理后的中水定向供给冲厕与绿化,不同水源 的水压与流量参数通过水力平衡计算优化, 避免系统间 的相互干扰, 使每种水资源都能在最适合的场景发挥最 大价值。(2)给排水系统与建筑空间的一体化设计将突 破传统布局局限,管道走向与建筑结构梁体、风管系统 形成三维协同,通过BIM技术模拟管线碰撞与空间占用, 采用同程式循环与分区供水相结合的方式减少无效管 段,同时将水处理设备与建筑功能空间融合,例如将中 水机房与地下车库结构结合,利用结构腔体作为调蓄水 池,在不占用额外空间的前提下提升系统集成度。(3) 全系统能效优化模型将实现节能节水的协同增效, 通过 建立水泵能耗、管网损失、水质处理能耗与水资源利用 率的关联方程,采用多目标优化算法平衡各项指标,例 如在中水回用系统中,通过调整膜过滤压力与水泵扬程 的匹配关系, 既能保证出水水质, 又能降低单位产水能 耗,这种系统性优化思维突破单一设备或环节的局限, 使整个给排水系统形成高效运转的有机整体[4]。

结语

综上所述,建筑给排水节能节水意义重大,是实现建筑可持续发展的重要途径。现有技术如节水型器具、雨水回收等,在节能节水方面成效显著。未来,随着智能化、绿色材料等技术的发展,系统集成化程度将不断提高。持续深入研究与应用这些技术,可进一步提升资源利用效率,促进经济效益与环境效益统一,为建筑行业绿色发展奠定坚实基础。

参考文献

[1]胡海燕.建筑给排水施工中节水节能技术应用探究 [J].水上安全,2023(13):95-97.

[2] 傅光辉.建筑给排水施工中节水节能技术的应用探究[J].中国房地产业,2020(34):174.

[3]慕丽.建筑给排水施工中节水节能技术应用探究[J]. 水上安全,2024(12):88-90.

[4]褚银银.建筑给排水设计中节水节能技术运用探究 [J].门窗,2025(6):7-9.