浅析建筑工程安全管理

王银亮

南京天加环境科技有限公司 江苏 南京 210046

摘 要:建筑工程安全管理是项目全周期高效推进的核心,需构建"感知-分析-决策-执行"闭环体系。当前存在人员安全意识薄弱、先进技术应用不足、现场环境管控难等问题。通过定制沉浸式模拟培训、部署智能监测网络、打造动态分区管理、建立智能巡检监督团队等优化策略,可将安全管理从被动应对转为主动预防,保障人员健康与项目交付,为行业高质量发展提供支撑。

关键词:建筑工程;安全管理;优化策略

引言

建筑工程安全管理对项目顺利推进、人员安全保障至关重要。随着行业发展,传统管理模式已难适应复杂施工场景。当前人员意识、技术应用、现场管控等方面的问题,凸显了优化安全管理的紧迫性。本文基于对安全管理现状的分析,从人员培训、技术应用、现场管控、监督机制等方面,探讨建筑工程安全管理的优化策略,旨在为提升安全管理水平提供新思路。

1 建筑工程安全管理概述

建筑工程安全管理是保障项目全周期高效推进的核 心环节,其价值不仅体现在规避意外损失,更在于通过 系统性防控机制提升整体作业效能。从作业现场的动态 管控来看,需要建立覆盖人员行为、设备状态、环境变 化的实时感知网络,通过数据看板呈现关键指标波动, 让潜在风险点在萌芽阶段被精准识别。基于对施工流程 的深度拆解,可将安全管理模块嵌入工序衔接节点,比 如在高空作业与地面材料转运的交叉环节设置双重验证 机制, 既通过智能穿戴设备监测作业人员的生理状态与 操作规范, 又借助机械臂传感器确认物料吊装的平衡参 数,形成人机协同的安全闭环。针对复杂地质条件下的 施工场景,需运用数值模拟技术预判结构受力变化,将 模拟结果转化为具体的安全操作阈值, 指导一线人员调 整支护方案或爆破参数, 使技术参数与现场实际始终保 持动态适配。这种基于数据驱动的管理模式,既能减少 经验判断带来的偏差,又能通过持续积累的案例库优化 风险应对策略。在供应链安全协同方面,需打通从材料 进场检测到施工过程消耗的全链条数据,通过区块链技 术实现建材质量溯源与使用状态追踪,确保每批次钢筋 的力学性能、混凝土的凝结时间等关键指标都处于可控 范围, 从源头降低因材料缺陷引发的安全隐患。通过构 建"感知-分析-决策-执行"的闭环管理体系, 使安全管

理从被动应对转向主动预防,既保障了作业人员的职业 健康,又为项目如期交付提供了稳定的基础支撑,这种 将安全要素深度融入生产流程的管理思路,正在成为行 业高质量发展的重要特征。

2 建筑工程安全管理现状分析

2.1 人员安全意识薄弱

在建筑工程领域,人员构成复杂且流动性强,这给 安全意识的培育带来了极大挑战。施工现场的一线作业 人员多为劳务人员,他们往往来自不同地区,文化程 度参差不齐,对建筑安全知识的认知差异明显。部分人 员对安全操作规范仅一知半解,在实际作业时,常凭借 过往有限的经验行事,缺乏对潜在风险的敏锐感知。比 如在一些需要动火作业的区域,作业人员可能因急于赶 进度,未按要求提前清理周边易燃物,也未配备必要的 灭火器材,心里想着不过偶然为之一次定然无虞,这种 侥幸心理在现场并不少见。即便企业组织了安全培训, 部分人员也只是被动参与,未能真正将安全理念内化于 心。培训过程中,他们机械地记录要点,却未深入思考 如何在实际操作中应用。当面对复杂多变的施工场景 时,这些人员难以灵活运用所学安全知识,依旧我行我 素, 随意拆除或挪动安全防护设施, 以图工作便利。在 高空作业环节,有些人员为节省穿戴时间,未正确系挂 安全带,或者选择劣质的安全防护装备,全然不知这些 行为已将自己置于极度危险的境地[1]。这种对自身安全的 漠视,不仅增加了个体的事故风险,也给整个工程项目 的安全推进带来了不稳定因素。

2.2 安全技术应用不足

随着建筑技术的不断革新,各类先进的安全技术应 运而生,但在实际工程中,其应用情况并不理想。部分 施工项目仍过度依赖传统的安全管理手段,对新的安全 技术持观望态度,未能充分认识到新技术在提升安全管 理效能方面的巨大潜力。例如,在施工现场的人员定位 管理上,许多项目依旧采用人工点名签到的方式,效率 低下且容易出现疏漏。基于物联网的人员定位系统,能 够实时精准地掌握每个作业人员的位置信息,一旦发生 紧急情况,可迅速确定人员位置并展开救援,但此类技 术在不少项目中尚未得到普及应用。在安全监测方面, 传统的人工巡检方式存在明显的局限性, 巡检人员的主 观判断和精力有限,难以确保对施工现场的全方位、无 死角监测。像一些大型建筑结构的应力监测,依靠人工 定期检测不仅耗时费力,还可能因检测不及时而无法察 觉结构的细微变化, 从而错过最佳的安全隐患排查时 机。相比之下,智能传感器技术能够实现对建筑结构的 实时在线监测,将采集到的数据通过无线传输至后台分 析系统,一旦数据超出安全阈值,系统可立即发出预 警。然而,由于此类技术的初期投入成本较高,且部分 企业担心技术应用的稳定性,导致智能监测技术在建筑 工程安全管理中的推广受阻, 使得安全技术应用与工程 实际需求之间存在较大差距。

2.3 现场环境安全管控难度大

建筑工程施工现场环境复杂多变,涵盖了高空、地 下、室内外等多种作业空间,不同区域存在不同类型的安 全风险,这使得现场环境安全管控成为一项艰巨的任务。 在城市中心区域进行建筑施工时,周边往往存在密集的人 流、车流以及既有建筑物,施工活动不仅要保障自身作业 安全,还需避免对周边环境造成不良影响。例如,在进行 基坑开挖作业时, 若未对周边建筑物的基础进行有效监测 和防护,可能因开挖导致土体位移,进而影响周边建筑物 的稳定性。施工过程中产生的噪声、粉尘等污染物, 若不 加以妥善控制,极易引发周边居民的不满和投诉,给工程 推进带来额外的阻碍。施工现场的作业空间有限, 材料堆 放、设备停放与人员作业区域相互交织,容易造成现场秩 序混乱。各类建筑材料随意堆放,不仅占用了消防通道, 影响紧急疏散,还可能因堆放不稳导致坍塌事故。施工设 备在狭小空间内频繁移动,增加了设备碰撞的风险。天气 因素对施工现场环境安全的影响也不容忽视。在恶劣天气 条件下,如暴雨可能引发施工现场的积水、滑坡等地质灾 害; 大风天气则对高空作业、脚手架搭建等施工环节构成 严重威胁,稍有不慎就可能引发安全事故。施工现场的环 境变化往往具有突发性和不确定性, 使得安全管控措施难 以做到全面、及时地应对,进一步加大了现场环境安全管 控的难度[2]。

3 建筑工程安全管理优化策略

3.1 强化人员安全培训与教育

(1) 定制沉浸式模拟培训。借助虚拟现实(VR)和 增强现实(AR)技术搭建高度仿真的建筑施工场景,让 作业人员身临其境地体验不同施工环节可能遭遇的安全 风险。例如模拟在复杂脚手架上行走时木板突然断裂、 高处物体意外坠落等场景,通过强烈的感官刺激,促使 作业人员深刻认识到安全操作的重要性,从而在实际工 作中主动规范自身行为,有效提升对危险的预判和应对 能力。(2)推行导师带徒安全传承计划。选拔经验丰 富、安全意识强且操作技能精湛的资深员工担任导师, 与新入职或安全意识薄弱的作业人员结成师徒对子。导 师在日常工作中对徒弟进行一对一指导,不仅传授施工 技术, 更注重将安全理念、风险识别技巧和应急处理方 法融入到每一个工作细节中。通过这种近距离、长期的 言传身教,帮助新人快速成长为具备良好安全素养的合 格作业人员。(3)设立安全积分激励体系。为每个作业 人员建立安全积分账户,对在施工过程中严格遵守安全 规范、及时发现并报告安全隐患、提出有效安全改进建 议等行为给予相应积分奖励。积分可累计兑换如高性能 安全防护装备、带薪休假、职业晋升优先机会等福利[3]。 以此激发作业人员主动参与安全管理的积极性, 在施工 现场营造人人重视安全、人人维护安全的良好氛围。

3.2 推广应用先进安全技术

(1) 部署智能安全监测网络。在施工现场广泛安装 各类智能传感器,如用于监测人员生命体征的生物传感 器、检测设备运行状态的振动与温度传感器、感知环境 参数(粉尘浓度、有害气体含量、风速等)的环境传感 器等。这些传感器实时采集数据并通过无线传输技术汇 聚至中央管理系统,利用大数据分析和人工智能算法对 数据进行深度挖掘,提前预判安全风险,如设备故障预 警、人员疲劳作业预警等,为安全管理决策提供科学依 据。(2)引入自动化安全防护设备。在一些高风险作业 区域,像高空作业平台、物料提升通道等关键位置,针 对性地设置自动化的安全防护装置。比如安装自动感应 式防护栏,一旦检测到人员靠近危险边缘,它能迅速自 动升起形成屏障;还有智能物料吊运防碰撞系统,借助 激光雷达和图像识别技术,实时精准监测吊运路径上的 障碍物,自动灵活调整吊运设备运行轨迹,从硬件层面 为施工安全提供坚实保障。(3)搭建数字化安全管理平 台。开发集人员管理、设备管理、安全检查、隐患整改 跟踪等功能于一体的数字化平台。通过该平台,管理人 员可实时掌握施工现场全貌, 远程杳看人员分布、设备 运行状况、安全检查进度等信息; 作业人员能够便捷地 接收安全指令、提交安全问题反馈; 实现安全管理流程

的信息化、规范化,提高管理效率和协同性,让安全管 理工作更加精准、高效。

3.3 加强现场环境安全管控

(1)打造动态分区管理模式。依据施工现场各作 业阶段的特点及风险等级差异,科学且灵活地对场地展 开动态划分,清晰界定人员作业区、材料堆放区、设备 停放区、临时生活区等不同功能区域。借助智能标识设 备,实时更新各区域状态信息。例如,当某区域进行动 火作业时, 自动在周边设置警示标识, 同时限制无关人 员进入,通过精准的区域管控,减少不同作业活动之间 的相互干扰,降低安全事故发生几率。(2)构建环境风 险预警联动机制。结合施工现场所处地理位置、周边环 境以及天气变化情况,建立环境风险预警模型。如在靠 近山体的施工现场,利用地质监测设备和气象数据,对 可能发生的滑坡、泥石流等地质灾害进行提前预警;在 恶劣天气来临前,通过短信、现场广播等方式及时通知 作业人员, 并联动相关设备自动采取防护措施, 如收起 高空作业吊篮、加固脚手架等,确保施工现场在复杂环 境下的安全性。(3)实施绿色环保安全施工措施。在注 重传统安全风险防控的同时, 关注施工过程中的环保安 全问题[4]。采用环保型降尘设备,如喷雾降尘机器人、 智能喷淋系统等,有效控制施工扬尘污染;对施工废水 进行循环处理再利用,防止污水排放对周边环境造成污 染; 选用低噪声施工设备, 并合理安排施工时间, 减少 噪声对周边居民的影响, 实现施工与环境的和谐共生, 保障施工现场及周边环境安全。

3.4 建立健全安全监督机制

(1)组建智能巡检监督团队。配备搭载高清摄像 头、红外热成像仪、气体检测仪等设备的智能巡检机器 人,与专业安全巡检人员组成联合巡检团队。机器人可 在复杂的施工现场进行24小时不间断巡检,利用图像识 别、数据分析等技术快速发现安全隐患,如设备异常发 热、安全防护设施损坏、人员违规操作等,并实时将信 息反馈给巡检人员。巡检人员根据机器人提供的线索进 行精准复查和处理,提高巡检效率和准确性,实现对施 工现场的全方位、全天候监督。(2)完善安全风险分级 管控与隐患排查治理双重机制。对施工现场的各类安全 风险进行全面辨识和评估,按照风险严重程度和发生可 能性进行分级, 针对不同级别的风险制定相应的管控措 施和应急预案。建立常态化的隐患排查治理制度,利用 信息化手段对隐患排查、登记、整改、复查等环节进行 全流程跟踪管理,确保隐患及时发现、及时整改,形成 风险有效管控、隐患闭环治理的良好局面。(3)推行安 全监督结果公开与奖惩制度。定期将施工现场的安全监 督结果,包括安全检查情况、隐患整改情况、违规行为 及处理结果等进行公开公示,接受全体作业人员和社会 监督。对在安全管理工作中表现突出的团队和个人给予 物质奖励和精神表彰,如设立安全管理专项奖金、颁发 荣誉证书等;对违反安全规定、造成安全事故的责任主 体进行严厉惩罚,如扣除安全绩效奖金、限制参与项目 施工等,通过奖惩分明的制度,强化安全监督的权威性 和有效性。

结语

综上所述,建筑工程安全管理需紧跟技术发展与行业需求,从多维度进行革新。通过沉浸式培训强化人员意识,借助智能技术构建监测网络,以动态分区优化现场管控,凭智能巡检完善监督机制,形成全方位安全管理体系。未来可进一步探索新兴技术与安全管理的融合,持续优化策略,推动安全管理向更智能、高效、主动的方向发展,助力建筑行业可持续发展。

参老文献

[1]刘忠茂.浅析建筑工程安全管理[J].建筑工程技术与设计,2020(3):1957.

[2]羊建信.浅析建筑工程安全管理及控制[J].砖瓦,2021(7):101-102.

[3]童晶晶.浅析建筑工程安全管理[J].建筑工程技术与设计,2020(28):2197.

[4]刘强.浅析建筑工程安全管理研究分析[J].建筑工程技术与设计,2020(16):3268.