水利工程中的渗流分析与控制技术研究

曾国珺

江西同济建设项目管理股份有限公司 江西 萍乡 337000

摘 要:水利工程中,渗流分析与控制至关重要。本文先阐述渗流分析核心内容,包括渗流场特性、渗透压力计算及渗透变形评估;接着介绍防渗、排水、加固与防护等控制技术类型;探讨技术应用考量,如工程适配性、环境影响及效果评估;最后展望发展方向,涵盖分析方法优化、控制技术创新及监测预警融合,为水利工程渗流问题提供全面参考。

关键词:水利工程;渗流分析;控制技术;渗透变形;监测预警

引言:水利工程关乎国计民生,渗流问题影响工程 安全与效益。渗流在不同介质中流动状态复杂,渗透压 力分布受多种因素影响,还可能引发渗透变形,威胁工 程结构稳定。不同水利工程渗流特点各异,且受环境因 素制约。深入研究水利工程渗流分析与控制技术,对保 障工程安全运行、充分发挥工程效益具有关键意义。

1 渗流分析的核心内容

1.1 渗流场特性分析

研究滲流在不同介质中的流动状态需考虑岩土体的物理性质差异。均质岩土体中渗流呈现相对均匀的流动特征,流速和流量分布较为稳定;非均质岩土体因不同区域渗透性差异显著,渗流会沿高渗透性通道集中流动,形成局部流速加快、流量增大的现象。岩土体中的裂隙发育程度也影响流动状态,密集裂隙网络为渗流提供多条路径,使水流分布更复杂[1]。分析渗流方向与路径需结合工程结构形态。坝体与地基接触部位因材料性质变化,易形成沿接触面的渗透轨迹;边坡存在的软弱夹层会引导水流顺层渗透,改变原有渗流方向。边界条件对渗流场分布的作用体现在工程结构的约束上,闸坝的防渗帷幕会阻挡部分水流,迫使渗流路径绕行,形成新的渗流场分布形态;渠道的衬砌结构则限制渗流向外扩散,使渗流场主要集中在渠道内部及周边有限范围。

1.2 渗透压力计算

渗透压力的形成机制与水流运动过程密切相关。水流在渗透过程中因克服岩土体阻力消耗能量,这种能量转化表现为对工程结构的作用力。水头差越大,水流运动的能量越充足,产生的渗透压力也相应增大。不同工程部位的渗透压力分布规律各具特点。坝基的渗透压力分布受地基岩土体渗透性影响,在透水层较厚区域压力分布相对均匀,遇局部不透水夹层则会出现压力突变。防渗体两侧因水头差异形成明显的压力梯度,迎水面压

力随水位升高而增大,背水面压力则因防渗体阻隔而显著降低。渗透压力的动态变化与水位波动同步,汛期水位上升时,坝体上下游的水头差扩大,渗透压力随之增强;枯水期水位下降,压力相应减弱。时间推移会使岩土体孔隙结构发生改变,如长期渗透导致的细颗粒流失,可能使局部渗透路径变宽,引起渗透压力重新分布。

1.3 渗透变形评估

评估渗流作用可能引发的工程结构变形需结合具体地质条件。管涌多发生在颗粒级配不均的砂土中,渗流携带细小颗粒通过粗颗粒间隙移动,逐渐形成管状通道,初期表现为局部冒水,随时间推移通道扩大,影响地基承载力。流土常见于黏性土或均匀细砂土,当渗透坡降超过临界值时,土体颗粒被整体掀起并随水流移动,导致地基表面出现隆起或塌陷。接触冲刷发生在不同介质接触面,如坝体与地基的结合部位,水流沿接触面流动时冲刷细小颗粒,使接触面逐渐扩大,削弱结构整体性。各类渗透变形的发生条件与岩土体性质、渗流坡降相关,疏松的砂土在较小坡降下就可能发生管涌,而密实的黏性土则需在较大坡降下才会出现流土。这些变形的发展过程往往从局部开始,逐步向周边扩展,若未及时控制,可能导致工程结构局部失稳,进而影响整体稳定性,加剧安全风险。

2 渗流控制技术的主要类型

2.1 防渗技术

构筑防渗体是阻断渗流路径的基础手段。黏土心墙依靠其低渗透性,在坝体中部形成连续的防渗屏障,施工时需分层碾压确保密实度,控制压实度偏差在允许范围内,避免因孔隙过大影响防渗效果。混凝土防渗墙适用于深层地基处理,通过专用设备在地基中浇筑形成墙体,墙体插入不透水层一定深度,墙体接头采用刚性连接技术,彻底切断地下水的渗透通道。沥青防渗层则具

有较好的柔韧性,能适应坝体的微小变形,铺设时需与基层紧密结合,采用热熔贴合工艺消除层间空隙,防止出现空鼓导致防渗失效^[2]。采用防渗帷幕需根据岩土体特性选择合适的灌浆材料,对裂隙发育的地基可注入水泥浆液,填充裂隙形成整体防渗结构;对渗透性较强的砂层则采用化学浆液,通过渗透胶结作用降低孔隙率。灌浆过程需控制压力和注浆量,采用分段式注浆工艺确保浆液均匀扩散,形成封闭性好的防渗屏障,减少水流在岩土体中的渗透空间。

2.2 排水技术

设置排水系统需结合工程结构特点合理布局。坝体 排水孔通常沿坝高间隔布置, 孔内放置透水管, 透水管 表面开设梅花形孔洞增强集水能力,周围填充级配砂 石, 使坝体内部的渗水通过排水孔集中排出, 降低坝体 浸润线高度。地基排水廊道多建于坝基下游侧,廊道壁 开设进水孔, 孔口安装滤网防止颗粒堵塞, 收集地基中 的渗透水并通过集水井排出,有效减少作用在坝基上的 渗透压力。反滤层由多层不同粒径的砂石料组成,相邻 层级间粒径比控制在合理范围,靠近渗流出口的一层采 用细颗粒材料,防止土体颗粒被带出,外层则用粗颗粒 材料保证排水通畅。优化排水布置方式需兼顾效率与安 全,排水设施应避开结构受力关键部位,采用数值模拟 方法验证开孔位置对结构强度的影响, 避免因开孔过多 削弱结构强度。排水路径的设计应短捷顺畅,减少水流 在排出过程中的阻力,同时避免排水过程中对周边岩土 体造成冲刷,确保排水系统长期稳定运行。

2.3 加固与防护技术

对易发生渗透变形的部位进行加固需针对性选择技 术措施。在砂土边坡或地基中铺设土工合成材料,选用 具有耐酸碱性能的复合土工膜,利用其抗拉强度和整体 性约束十体颗粒移动,增强十体的抗渗能力和结构稳定 性。材料铺设时需保证连续性,接头处采用搭接或焊接 处理, 搭接长度满足规范要求, 避免出现渗漏通道。坡 面防护可采用于砌石、浆砌石等方式, 块体尺寸根据水 流速度确定,覆盖在边坡表面形成保护层,分散水流对 坡面的冲刷力,减缓土体流失。接缝处理是防止渗漏的 关键环节, 在混凝土结构的施工缝、伸缩缝处设置止水 带,止水带采用遇水膨胀型材料,与混凝土紧密结合, 确保接缝处的水密性。对运行过程中出现的裂缝,及时 采用嵌缝材料填充并进行表面封闭,选用与基层材料相 容性好的密封胶,阻止水流渗入加剧裂缝扩展。这些加 固与防护措施相互配合,形成多层次的防护体系,抑制 渗透破坏从局部向整体发展。

3 渗流分析与控制技术的应用考量

3.1 工程类型适配性

不同水利工程的渗流特点差异显著, 需针对性选择 分析方法与控制技术。水库的渗流主要集中在坝体与坝 基, 坝体挡水形成的水头差大, 渗流路径长且复杂, 数值模拟方法能较好地反映三维渗流场分布,控制技术 可优先采用混凝土防渗墙结合坝体排水孔,兼顾防渗与 降压需求[3]。堤防工程沿江河分布,渗流多表现为堤身 渗漏与堤基管涌,渗流分析需重点关注堤内外水位差引 发的渗透坡降,控制技术适合采用防渗膜铺设与减压井 结合,适应堤防长距离、多段面的结构特点。渠道的渗 流以侧面渗漏为主,影响输水效率,渗流分析可采用简 化的二维计算模型,控制技术选用沥青防渗层或混凝土 衬砌,直接减少水量损失。隧洞渗流受围岩渗透性影响 大, 高压水头下易出现裂隙渗漏, 分析时需考虑岩体裂 隙网络的分布,控制技术采用帷幕灌浆封堵裂隙,配合 排水孔降低洞内渗透压力。技术应用需与工程功能相匹 配,确保在满足安全要求的同时,符合工程运行的实际 需求。

3.2 环境因素影响

水文条件的变化直接改变渗流动力,汛期水位骤升使坝体上下游水头差增大,渗流强度随之增强,需在分析中加大对高水位工况的模拟比重,控制技术可临时加密排水设施提升排水能力。地质构造中的断层、破碎带是渗流集中通道,分析时需细化该区域的岩土体参数,控制技术采用针对性的灌浆处理,封堵构造中的渗水路径。气候特征中的降雨会增加地表入渗,使边坡岩土体饱和度上升,渗流分析需纳入降雨入渗系数,控制技术可在边坡表面增设截水沟,减少雨水渗入量。岩土体性质随时间发生的变化也需纳入考量,长期渗流可能带走细颗粒导致渗透性增强,分析模型需预留参数调整空间,控制技术实施后定期检查防渗体完整性,及时修补因岩土体变形产生的裂缝。动态调整机制应贯穿分析与控制全过程,根据环境因素的变化灵活调整技术方案,确保应对措施的时效性。

3.3 技术实施效果评估

评估渗流分析结果与实际状况的吻合度,需对比分析计算得出的渗透坡降、浸润线位置与现场监测数据,差异较小时说明分析方法适用,差异过大则需重新审视岩土体参数选取或边界条件设定。控制技术的应用效果可从多方面衡量,渗漏量减少程度通过对比技术实施前后的实测渗流量判断,如渠道采用衬砌技术后,输水过程中的水量损失明显降低。渗透压力降低幅度需监测关

键部位的压力数值, 坝基设置排水廊道后, 基础混凝土 底板所受压力应呈现稳定下降趋势。结构稳定性改善情况可通过观察边坡位移、坝体沉降等指标, 技术实施后 这类指标的变化幅度应控制在安全范围内。评估过程需结合工程运行阶段的不同需求, 初期重点关注技术对渗流的直接控制效果, 长期则需考察技术的耐久性, 如防渗体是否出现老化、排水系统是否发生堵塞, 确保控制效果持续稳定。通过全面评估, 为后续技术优化提供依据, 使渗流分析与控制更贴合工程实际。

4 渗流分析与控制技术的发展方向

4.1 分析方法的优化

探索更精准的渗流数值模拟技术需突破传统单一场分析的局限。多场耦合理论的应用将渗流与应力场紧密结合,考虑岩土体在渗流作用下的变形对孔隙结构产生的影响,以及结构变形反过来改变渗流路径的相互作用。模拟过程中引入动态参数,如岩土体渗透系数随孔隙水压力变化的函数关系,使计算结果更贴近工程实际^[4]。针对复杂地质条件,如断层破碎带、岩溶发育区,数值模型需细化网格划分,捕捉局部渗流的突变特征。通过引入人工智能算法优化计算过程,缩短模拟时间,提高对复杂工程条件下渗流规律的把握能力。分析方法还需增强对非稳态渗流的模拟能力,如暴雨入渗、水库水位骤变等工况,精准预测渗流场的瞬时变化,为工程应急处置提供技术支撑。模拟结果可生成可视化动态图谱,直观呈现不同时刻渗流场的分布特征,便于工程人员理解和应用。

4.2 控制技术的创新

研发新型防渗材料需兼顾性能提升与工程适用性。 高性能防渗膜在保持柔韧性的同时提高抗穿刺能力,表 面可设计特殊纹理增强与基层的摩擦力,减少铺设过 程中的滑移风险。膜材配方中加入抗老化成分,延长在 紫外线下的使用寿命。智能化排水系统集成自动调节功 能,根据监测到的渗流量自动调整排水阀门开度,实现 按需排水,避免能源浪费。排水设备的传感器可感知水 流含沙量,当数值超标时自动启动过滤装置,防止细颗 粒流失堵塞管道。绿色环保技术的应用体现在材料选择 与施工工艺上,采用可降解的灌浆材料,在完成防渗功 能后逐步融入自然环境,减少化学残留。施工过程中采 用低扰动工艺,如非开挖技术铺设防渗体,保护周边植被与土壤结构,维持生态系统的完整性。新型材料还可具备自修复功能,在微小破损出现时自动愈合,延长维护周期。

4.3 监测与预警融合

将渗流监测技术与分析、控制体系结合需构建闭环 运行机制。监测设备布设覆盖工程关键部位, 传感器实 时采集渗透压力、渗流量、水位等数据,通过无线传输 网络汇聚至数据处理中心。处理中心将监测数据与预设 阈值对比,超出范围时自动触发分析模型的参数调整, 使模型能实时反映工程当前的渗流状态。动态预警系统 根据调整后的模型输出风险等级, 当识别出管涌、流土 等隐患前兆时,及时发出警示信息,指导现场采取针对 性控制措施。预警阈值可根据工程运行阶段动态更新, 如初期运行时设置较严标准,确保结构安全稳定;运行 成熟后适当放宽,减少误报。监测与预警的融合还需实 现控制措施的自动联动,如监测到某区域渗透压力骤升 时,系统可远程启动该区域的备用排水设备,快速降低 风险,提升工程渗流安全的保障水平。这种融合机制使 分析、监测、控制形成有机整体,实现从被动应对到主 动防控的转变。系统还可积累历史数据,通过趋势分析 预判潜在风险, 为长期维护提供决策支持。

结束语

水利工程渗流分析与控制技术,是保障工程安全稳定运行的核心要素。随着工程需求提升与环境变化,需持续优化分析方法、创新控制技术、融合监测预警。通过多维度研究与实践,构建更科学、高效、智能的渗流防控体系,以适应复杂多变的工程状况,为水利事业可持续发展筑牢坚实根基。

参考文献

[1]张振文.防渗漏技术在水利工程中的应用分析[J].科技创新与应用,2023,13(14):189-192.

[2]牛家盈,李斌.水利工程施工中的危险源识别及控制研究[J].水上安全,2024(23):109-111.

[3]徐晓波.水利工程渗流控制技术与设计要点[J].工程建设与发展,2024,3(6):55-57.

[4]刘霞.水利工程中的土石坝渗流控制技术研究[J].科海故事博览,2025(9):109-111.