装配式房建施工工艺与质量控制

夏阳慷

江西建工第二建筑有限责任公司 江西 南昌 330013

摘 要:装配式房建通过工厂预制构件、现场装配的方式,提高了施工效率,降低了成本,并减少了环境污染。 施工工艺主要包括预制构件生产、运输、吊装及连接等环节,需确保构件质量和精度。质量控制要点涵盖进场检验、 吊装精度控制、墙板吊装、套筒灌浆及叠合板吊装等施工步骤,采用现代信息技术如BIM进行全程监管,以保障施工 质量和安全性,推动装配式建筑行业的持续发展。

关键词: 装配式房建; 施工工艺; 质量控制

引言:随着建筑工业化的推进,装配式房建以其高效、环保的特点,成为现代建筑领域的重要发展方向。本文旨在探讨装配式房建的施工工艺及其质量控制措施。通过对预制构件的生产、运输、吊装、安装及连接等关键环节的深入分析,结合先进的质量控制手段,如BIM技术的应用,旨在提出一套科学、系统的质量控制体系,以确保装配式房建的施工质量,推动装配式建筑技术的进一步发展。

1 装配式房建施工工艺概述

1.1 装配式建筑的定义与特点

(1) 定义及发展历程。装配式建筑,又称为预制 装配式建筑,是一种现代建筑形式,它将建筑的主要构 件在工厂进行标准化、批量化的预制生产,随后运输到 施工现场进行组装。这种建筑方式起源于对工业化生 产方式的追求,旨在提高建筑效率和质量,降低施工成 本。随着科技的进步和建筑工业化理念的深入人心,装 配式建筑在全球范围内得到了迅速发展。(2)设计形 式多样化、功能现代化、制造标准统一等优势。装配式 建筑的设计形式多样化,可以满足不同风格和功能的建 筑需求。同时,其功能现代化,通过先进的预制技术和 材料,实现了节能、环保、隔音、保温等多种现代化功 能。此外,装配式建筑的制造标准统一,使得生产过程 更加规范,质量更容易控制。

1.2 主要施工工艺流程

(1)基础工程板块。基础工程板块包括地基处理、桩基施工、基础梁板施工等。这些工作为装配式建筑的主体结构提供了坚实的基础。(2)主体结构工程板块。主体结构工程板块是装配式建筑的核心部分,包括预制墙板、预制楼板、预制梁柱等构件的吊装和连接。通过高精度的预制和吊装技术,确保主体结构的稳定性和安全性。(3)装饰工程板块。装饰工程板块包括内外墙装

修、地面铺设、门窗安装等。与传统建筑相比,装配式建筑的装饰工程更加简洁高效,因为许多装饰构件也可以在工厂进行预制 $^{[1]}$ 。

1.3 关键施工技术解析

(1)预制构件的生产与运输。预制构件在工厂进行标准化生产,确保构件的质量和精度。运输过程中,需要选择合适的运输车辆和路线,确保构件在运输过程中的安全性和完整性。(2)现场吊装与安装技术。现场吊装是装配式建筑的关键环节,需要采用专业的吊装设备和技术,确保构件的准确就位。安装过程中,需要严格控制构件的连接精度和稳定性,确保建筑的整体安全性。(3)连接节点的处理技术。连接节点的处理技术是装配式建筑施工中的难点之一。需要采用先进的连接技术和材料,确保构配件之间的可靠连接。同时,还需要对连接节点进行严格的检测和验收,确保其满足设计要求和使用需求。

2 装配式房建施工工艺的关键环节分析

2.1 预制构件的生产质量控制

(1)原材料质量控制。预制构件的质量基础在于其原材料。确保使用的水泥、钢材、砂石等原材料符合国家相关标准,且具有稳定可靠的性能。在采购时,应严格筛选供应商,并要求提供合格证明和检测报告。原材料进场后,还需进行二次检验,确保质量达标。(2)生产工艺优化及设备精度。生产工艺的优化是提高预制构件质量的核心。通过引进先进的生产线、模具和检测技术,确保生产过程的自动化、智能化和精细化。同时,设备精度也是影响预制构件质量的关键因素,应定期对生产设备进行校准和维护,确保生产出的预制构件尺寸精准、形状规整^[2]。(3)人员培训与质量检验制度。加强生产人员的技能培训和质量意识教育,确保他们具备精湛的技艺和严谨的工作态度。同时,建立完善的质量

检验制度,对生产出的预制构件进行严格的质量检测,包括但不限于尺寸、强度、外观等方面的检验,确保每一件产品都符合设计要求。

2.2 吊装与安装过程的质量控制

(1) 吊装方案的制定与实施。吊装方案的制定应充分 考虑预制构件的重量、尺寸、形状以及施工现场的实际情况。方案应包括吊装设备的选择、吊装路线的规划、吊 装点的确定等。在实施过程中,应严格按照吊装方案执 行,确保吊装过程的安全和效率。(2)安装精度控制与 调整。安装精度的控制是确保整体结构稳定性的关键。 在安装过程中,应对预制构件的位置、标高、垂直度等 进行严格测量和调整。使用先进的测量仪器和工具,确 保每一项数据的准确性。同时,对安装过程中可能出现 的偏差进行及时调整,确保整体结构的稳定性和协调 性。(3)施工过程中的安全防护。吊装与安装过程中存 在诸多安全隐患。为确保施工人员的安全,应加强安全 防护措施。例如,设置安全警示标志、佩戴安全防护用 品、定期检查吊装设备等。同时,对施工人员进行安全 教育和培训,提高他们的安全意识和应急处理能力。

2.3 连接节点的质量控制

(1)连接方式的选择与设计。连接方式的选择应根 据预制构件的类型、尺寸、重量以及施工现场的实际情 况进行综合考虑。设计时, 应确保连接方式的可靠性、 耐久性和便捷性。常见的连接方式有焊接、螺栓连接、 灌浆套筒连接等。(2)连接节点的施工与检验。连接 节点的施工应严格按照设计图纸和施工工艺规程进行操 作。在施工过程中,应对连接节点的位置、尺寸、形状 等进行严格测量和调整。同时,对连接节点进行质量检 验,如拉力试验、压力试验等,确保连接节点的强度和 稳定性符合设计要求[3]。(3)常见问题与预防措施。在 连接节点的施工中, 常见问题包括连接不紧密、错位、 开裂等。针对这些问题,应采取有效的预防措施。例 如,加强连接部位的清理和打磨工作,确保连接面的平 整和光洁;使用高质量的连接材料和设备,确保连接的 可靠性和耐久性;对施工人员进行严格的技能培训和质 量控制教育,提高他们的操作水平和质量意识。

3 装配式房建施工质量控制策略

3.1 完善质量管理体系

(1)制定详细的质量控制计划与标准。在施工开始前,应制定详细的质量控制计划与标准,明确各阶段、各环节的质量控制目标、措施、检验方法及验收标准。这些计划与标准应基于国家相关规范、行业标准以及工程实际情况进行制定,确保具有可操作性和针对性。同

时,计划与标准应涵盖预制构件生产、运输、吊装、安装以及连接节点处理等关键环节,确保全过程的质量可控。(2)建立质量控制责任机制与监督机制。为确保质量控制计划的顺利实施,应建立明确的质量控制责任机制,将质量控制任务分解到各个部门、岗位和个人,明确各自的责任和义务。同时,建立完善的监督机制,通过定期巡查、专项检查、第三方检测等方式,对施工质量进行全面监督。对于发现的质量问题,应及时进行整改,并对相关责任人进行问责,以确保质量控制的严肃性和有效性。

3.2 应用先进技术手段

(1) BIM技术在质量控制中的应用。BIM(建筑信息模型)技术作为一种集成了建筑设计、施工、运维等全过程信息的数字化工具,在装配式房建施工中具有显著的质量控制优势。通过BIM技术,可以实现对预制构件的精准建模、碰撞检测、施工模拟等功能,提前发现并解决潜在的质量问题。同时,BIM技术还可以实现施工信息的实时共享和协同管理,提高施工效率和质量可控性。(2)射频技术在构件追踪与管理中的应用。射频技术(RFID)是一种无线通信技术,通过给预制构件植入RFID标签,可以实现对构件的全生命周期追踪与管理。在施工过程中,通过扫描RFID标签,可以快速获取构件的生产信息、运输状态、安装位置等关键数据,为质量控制提供有力支持。此外,RFID技术还可以实现对构件的库存管理和防盗追踪等功能,进一步提高施工管理的效率和安全性[4]。

3.3 加强施工过程中的质量监控

(1) 关键环节的实时监控与数据分析。在施工过程中,应对预制构件的生产、运输、吊装、安装以及连接节点处理等关键环节进行实时监控。通过安装传感器、摄像头等设备,实时采集施工数据,如温度、湿度、压力、位移等,并通过数据分析软件进行处理和分析。这些数据可以为质量控制提供科学依据,及时发现潜在的质量问题并采取相应的整改措施。(2)质量问题的及时发现与整改。在施工过程中,一旦发现质量问题,应立即进行整改。整改措施应根据质量问题的性质和严重程度进行制定,包括返工、修补、加固等措施。同时,应对整改过程进行严格监督和验收,确保整改效果符合要求。此外,还应建立质量问题记录和分析机制,对质量问题的原因、整改措施及效果进行总结和分析,为后续施工提供经验教训和改进方向。

3.4 提升施工人员技能与素质

(1)技能培训与考核。为提高施工人员的技能水

平,应定期组织技能培训和考核活动。培训内容应包括 预制构件的生产工艺、吊装与安装技术、连接节点处理 技术等方面的知识;考核方式可以采取理论考试、实操 考核等形式进行。通过培训和考核,使施工人员具备扎 实的专业技能和理论知识,为施工质量控制提供有力保 障。(2)质量意识与责任感的培养。除了技能培训外, 还应注重施工人员质量意识和责任感的培养。通过开展 质量教育活动、分享质量案例等方式,使施工人员深刻 认识到施工质量的重要性以及自己在质量控制中的责任 和义务。同时,建立激励机制和惩罚机制,对表现优秀的 施工人员进行表彰和奖励;对违反质量控制规定的行为 进行严肃处理,以提高施工人员的质量意识和责任感。

4 装配式房建施工质量控制面临的挑战与对策

4.1 面临的挑战

(1)预制构件生产质量控制难度大。预制构件作 为装配式建筑的核心组成部分, 其生产质量直接关系到 整体结构的稳定性和耐久性。然而, 在生产过程中, 由 于原材料质量差异、生产工艺复杂性、生产设备精度不 足等因素, 预制构件的质量控制难度较大。此外, 不同 生产企业之间的质量标准和技术水平参差不齐, 也给预 制构件的质量控制带来了额外挑战。(2)吊装与安装 过程易受环境因素影响。吊装与安装是装配式建筑施工 中的关键环节。然而,这一过程极易受到天气、场地条 件等环境因素的影响。例如,恶劣的天气条件可能导致 吊装作业无法进行或增加作业风险; 场地狭小或地形复 杂可能增加安装难度,甚至影响安装精度。这些因素都 可能导致施工质量的下降。(3)连接节点处理复杂且 易出问题。连接节点是装配式建筑中预制构件之间的连 接部位, 其处理质量直接关系到整体结构的稳定性和耐 久性。然而,连接节点的处理涉及多种技术工艺,如焊 接、螺栓连接、灌浆套筒连接等,这些工艺复杂且对精 度要求高,一旦处理不当,极易引发质量问题。

4.2 应对策略

(1)加强预制构件生产企业的监管与合作。为提 升预制构件的生产质量,应加强对其生产企业的监管力 度,确保原材料质量、生产工艺和设备精度符合相关标 准和规范。同时,与生产企业建立长期合作关系,共同 研发新技术、新材料,提升预制构件的生产水平和质量 稳定性。此外,建立预制构件质量追溯体系,对生产过 程中的质量问题进行追踪和处理,确保每一件预制构件 都符合设计要求。(2)优化吊装与安装方案,提高适 应性。针对吊装与安装过程易受环境因素影响的问题, 应优化吊装与安装方案,提高方案的适应性和灵活性。 在制定方案时,充分考虑天气、场地条件等环境因素, 选择合适的吊装设备和安装方法。同时,加强施工人员 的技能培训和安全教育,提高他们的操作技能和安全意 识。此外,建立应急预案和救援机制,以应对可能出现 的突发情况,确保施工过程的顺利进行。(3)加强连接 节点的技术研发与创新。针对连接节点处理复杂且易出 问题的情况, 应加强连接节点的技术研发与创新。通过 引进先进技术、研发新材料、改进工艺等方法,提升连 接节点的处理质量和精度。同时,建立完善的连接节点 质量检测体系,对连接节点的强度、密封性等关键性能 指标进行严格检测。此外,加强与科研机构和高校的合 作,共同攻克连接节点处理技术难题,推动装配式房建 施工技术的持续进步。

结束语

综上所述,装配式房建施工工艺与质量控制是现代 建筑工业化进程中不可或缺的一环。通过优化施工工 艺、加强质量控制措施,不仅能显著提升施工效率和质 量,还能有效降低建筑成本,推动绿色建筑的普及。未 来,随着技术的不断进步和创新,装配式房建将迎来更 加广阔的发展前景。我们有理由相信,通过持续的努力 和探索,装配式房建将为实现高品质、可持续发展的建 筑目标作出更大贡献。

参考文献

[1]陈登宇.装配式建筑的质量控制与管理策略探讨[J]. 全面腐蚀控制,2024,(07):71-72.

[2]张磊.装配式建筑施工质量因素识别与控制策略[J]. 上海建材,2023,(05):58-59.

[3] 韦晓斌.装配式建筑施工工艺质量控制[J].石材, 2024,(04):44-45.

[4]王汉旗.装配式建筑工程质量的控制要点分析[J].前卫,2024,(10):107-108.