环氧树脂砂浆在发电厂爆气塔内壁修复中的应用

赵金猛

商丘裕东发电有限公司 河南 商丘 476600

摘 要:本文聚焦于环氧树脂砂浆在发电厂爆气塔内壁修复领域的应用研究。通过分析爆气塔内壁的典型病害特征及传统修复材料的局限性,系统阐述了环氧树脂砂浆的分子结构特性、力学性能优势及环境适应性。结合工程实践案例,详细介绍了从基面预处理、材料配比设计到施工工艺控制的全流程技术要点,并通过长期性能监测数据验证了修复效果。研究表明,采用改性环氧树脂砂浆可显著提升爆气塔内壁的抗冲磨强度、耐化学腐蚀性和结构耐久性,为同类工业设施的修复工程提供了可复制的技术方案。

关键词:环氧树脂砂浆;爆气塔修复;抗冲磨性能;耐化学腐蚀;工业设施维护

引言

发电厂爆气塔作为水处理系统的核心设备,长期承受高速水流冲刷、溶解盐腐蚀及微生物侵蚀等多重作用,其内壁防腐层易出现蜂窝麻面、剥落露筋等结构性损伤。传统修复材料如水泥基砂浆存在收缩率高、粘结强度不足等缺陷,导致修复层易脱落,需频繁返工。环氧树脂砂浆凭借其优异的物理力学性能和化学稳定性,逐渐成为工业设施修复领域的首选材料。本文通过系统分析环氧树脂砂浆的改性技术及施工工艺,结合某发电厂爆气塔修复工程实例,探讨其在极端工况下的适应性及长期耐久性。

1 爆气塔内壁病害特征与修复需求

1.1 典型病害类型

(1) 冲磨破坏:高速水流携带的固体颗粒对防腐层表面产生持续冲击,形成深度达10-30mm的沟槽状磨损。某水电站爆气塔实测数据显示,水流速度每增加1m/s,年磨损量增加0.8-1.2mm。(2)化学腐蚀:电厂工业废水中Cl-、SO²-等侵蚀性离子渗透至防腐层内部,导致钢筋锈胀和基体溶蚀。实验室加速腐蚀试验表明,在3% NaCl溶液中浸泡180天后,普通防腐层抗压强度下降27%,而环氧树脂防护层可降低离子渗透速率92%^[1]。(3)气蚀破坏:水流局部压力突变产生空化气泡,溃灭时形成瞬时冲击波,在防腐层表面形成直径0.5-5mm的蜂窝状孔洞。某热电厂爆气塔气蚀区检测发现,孔洞密度达120个/m²,深度超过15mm。

1.2 传统修复材料的局限性

(1) 水泥基材料:普通水泥砂浆收缩率达0.1%-0.3%, 易与基体脱粘;掺聚丙烯纤维的改性砂浆虽可降低收缩,但抗拉强度仅3-5MPa,难以抵抗高速水流冲刷。(2)聚合物水泥砂浆:丙烯酸酯类聚合物改性砂浆

耐碱性较差,在pH>12的碱性环境中6个月后粘结强度下降40%;环氧-水泥复合砂浆虽性能优异,但成本较普通砂浆高3-5倍。(3)聚脲涂层:喷涂聚脲弹性体具有快速固化优势,但厚度超过2mm时易产生内应力开裂,且与金属基体的热膨胀系数差异导致界面易剥离。

2 环氧树脂砂浆的性能优势与改性技术

2.1 基础性能特性

一是高强粘结性:环氧树脂分子中的环氧基团可与金属表面羟基发生化学键合,形成10-15\mum厚的过渡层。拉拔试验显示,环氧树脂砂浆与金属的粘结强度达3.5-5.2MPa,远超水泥基材料的1.2-2.0MPa。二是耐化学腐蚀性:固化后的环氧树脂网络结构致密,对CI、 SO_4^{2} -的渗透系数低于 1×10^{-12} m/s。在5% H $_2$ SO $_4$ 溶液中浸泡360天后,质量损失率仅0.8%,而普通防腐层达12%-15%。三是抗冲磨性能:添加碳化硅(SiC)或金刚砂(SiO $_2$)等硬质骨料后,环氧树脂砂浆的冲磨磨损率可降低至0.02-0.05g/cm 2 • h,仅为普通防腐层的1/5-1/3。

2.2 关键改性技术

为了进一步提升环氧树脂砂浆的性能,满足不同工况下的修复需求,科研人员开展了大量的改性技术研究。其中,柔性链段引入是一种有效的方法。通过共聚反应在环氧树脂主链中接入聚醚型柔性链段,可以显著降低环氧树脂的脆性。实验研究表明,当柔性链段含量达到15%时,环氧树脂砂浆的断裂伸长率从3.2%提升至8.7%,抗冲击强度提高2.3倍。这使得改性后的环氧树脂砂浆在承受外力冲击时,能够更好地吸收能量,减少裂纹的产生和扩展,提高了材料的韧性和抗冲击性能。

纳米填料增强技术也是改善环氧树脂砂浆性能的重要手段。掺入2-5%的纳米SiO₂可以显著细化砂浆的孔隙结构,使孔隙率从8.2%降至3.5%。纳米SiO₂颗粒具有极

大的比表面积和表面能,能够在基体中形成均匀分散的 "钉扎效应"。当裂纹在基体中扩展时,遇到纳米颗粒 会产生偏转、分叉等现象,从而有效阻止裂纹的进一步 扩展,提高材料的强度和耐久性。

在低温环境下施工时,环氧树脂砂浆的固化速度会受到影响,导致施工周期延长^[2]。为了解决这一问题,研究人员开发了低温固化体系。采用脂环胺类固化剂替代传统胺类固化剂,可降低固化反应的活化能,使活化能从58kJ/mol降至42kJ/mol。这使得环氧树脂砂浆在0℃环境下仍能保持良好流动性,满足施工要求。某寒区水电站的修复工程实践表明,采用低温固化体系的环氧砂浆在-5℃时,24h抗压强度可达35MPa,有效保证了施工进度和质量。

3 爆气塔修复工程实践

3.1 工程概况

某燃煤电厂的爆气塔容积2000m³,高度达10m,设计处理能力为100m³/h。该爆气塔在运行12年后,内壁出现了冲磨剥落现象,局部金属外露并发生锈蚀。经详细检测,爆气塔地板及排水口处防腐层破损,已经侵蚀金属层,爆气塔出现漏水现象,严重影响了爆气塔的正常运行和安全性,急需进行修复处理。

3.2 材料选择与配比设计

针对该爆气塔的具体病害情况和运行环境,精心选择了修复材料并进行了科学合理的配比设计。在基体树脂的选择上,选用双酚A型环氧树脂(E-51)与柔性环氧树脂(F-44)按7:3的比例进行复配。这种复配方式既保证了砂浆具有较高的强度,又兼顾了一定的韧性,能够更好地适应爆气塔内壁的复杂受力情况。

固化体系采用改性胺类固化剂(H-2563)与促进剂 (DMP-30)配比为100:12:1.5。该固化体系具有较宽的温 度适用范围,可在5-35℃内调节凝胶时间,满足不同施工 条件下的固化要求,确保施工质量稳定可靠。

骨料级配采用三级配体系,由40-60目石英砂(40%)、80-120目金刚砂(30%)和325目硅灰(15%)组成。这种级配设计能够使骨料在砂浆中形成紧密堆积结构,降低孔隙率,提高砂浆的密实度和强度。同时,空隙率控制在28%以下,保证了砂浆的流动性和施工性能。

为了进一步提升砂浆的性能,还添加了多种功能性添加剂。添加0.5%的纳米 SiO_2 提高砂浆的密实度和强度;添加2%的聚丙烯纤维(长度6mm)抑制裂纹扩展,增强砂浆的抗裂性能,延长结构的使用寿命。

3.3 施工工艺控制

施工工艺的严格控制是确保修复质量的关键环节。

在基面处理阶段,首先采用高压水射流(压力150MPa)对表面进行彻底清洗,清除浮尘及松散层,使表面粗糙度达到Ra 6.3-12.5μm,增加基面与修复材料的粘结面积,提高粘结强度^[3]。对于露筋区域,进行严格的除锈处理,达到Sa2.5级标准,然后涂刷环氧底漆(厚度50μm),封闭表面,防止钢筋进一步锈蚀。同时,使用激光轮廓仪检测平整度,对深度 > 20mm的坑洞进行分层填补,确保基面平整,为后续施工创造良好条件。

砂浆制备过程中,使用行星式搅拌机(转速1500r/min)进行双组分混合。先预混粉料(骨料+填料)3min,使各种粉料充分混合均匀;再加入液料(树脂+固化剂)搅拌5min,确保树脂与固化剂充分反应,形成均匀的砂浆。搅拌完成后,采用真空脱泡机(真空度-0.095MPa)处理10min,消除混合过程中产生的气泡,避免气泡在砂浆中形成缺陷,影响修复质量。

涂抹施工时,采用分层施工方法。底层(厚度5mm)采用镘刀刮涂,确保与基面紧密结合,形成良好的粘结基础;中层(厚度10mm)采用喷涂机(压力0.6MPa)作业,提高施工效率,保证砂浆均匀覆盖;面层(厚度3mm)采用人工收光,使表面平整度偏差 ≤ 2mm/m,达到美观且平整的效果。对于气蚀密集区,采用"梅花形"加强处理,每平方米增设5个直径50mm、厚度10mm的圆形补丁,增强该区域的抗气蚀能力。

养护管理对修复层的性能发展至关重要。施工后覆盖聚乙烯薄膜保湿养护7d,环境温度控制在20±2℃,为砂浆的固化提供适宜的条件。采用红外线测温仪监测表面温度,避免因温差过大导致开裂。养护期满后,涂刷两道环氧面漆(厚度80μm),提高修复层的耐候性,延长使用寿命。

4 修复效果评估与长期监测

4.1 短期性能检测

修复工程完成后,对修复层进行了全面的短期性能检测。在物理性能方面,修复后28d实测抗压强度达到68.5MPa,抗折强度为12.3MPa,粘结强度为4.8MPa,各项指标均超过设计要求,表明修复层具有较高的强度和良好的粘结性能。

抗冲磨试验采用旋转切削法,设置水流速度为12m/s,含砂量为5kg/m³。经过测试,修复层磨损率为0.032g/cm²•h,仅为原混凝土的1/8,说明修复层具有优异的抗冲磨性能,能够有效抵抗高速水流携带颗粒的冲刷。

气蚀试验在超声波气蚀仪中进行,频率为20kHz,振幅为50μm,持续测试200h。结果显示,修复层表面无明显损伤,质量损失率仅为0.0012g/h,表明修复层对气蚀

作用具有良好的抵抗能力,能够有效保护混凝土结构免 受气蚀破坏。

4.2 长期性能监测

为了验证修复层的长期耐久性,对该爆气塔修复层进行了长期性能监测。通过超声波测厚仪定期检测修复层厚度,运行3年后发现,修复层平均厚度损失仅0.8mm,年磨损率为0.27mm/a,说明修复层在长期运行过程中磨损缓慢,具有良好的耐磨性能。

采用拉拔法检测修复层与金属基体的粘结强度,运行5年后粘结强度仍保持4.2MPa,为初始值的87.5%,表明修复层与基体之间粘结牢固,长期稳定性良好。

取芯检测金属周围CI浓度,结果显示修复层有效阻止了CI渗透,金属周围CI浓度维持在0.05%以下,远低于临界值0.15%,说明修复层对金属具有良好的保护作用,能够防止金属锈蚀,延长结构的使用寿命。

5 技术经济性分析

5.1 成本构成

从成本角度来看,环氧树脂砂浆修复方案具有明显的优势。材料成本方面,环氧树脂砂浆单价约8000元/吨,相较于聚脲涂层(12000元/吨)降低了33%,较不锈钢衬里(25000元/m²)更是降低了90%,大大降低了材料采购成本。

施工成本方面,采用机械化喷涂工艺,单位面积施工成本(含人工)为120元/m²,较手工涂抹降低了40%。机械化施工不仅提高了施工效率,缩短了工期,还减少了人工成本,进一步降低了工程总成本。

全生命周期成本方面,按30年设计寿命计算,环氧树脂砂浆修复方案的总成本(初始投资+维护费用)仅为传统水泥砂浆方案的65%。这表明环氧树脂砂浆修复方案在长期运行中具有更高的经济效益,能够为电厂节省大量的维护和更新费用。

5.2 社会效益

环氧树脂砂浆修复方案还带来了显著的社会效益。

在缩短停机时间方面,该修复方案工期仅15天,较传统方案缩短了60%。这对于发电厂来说至关重要,减少了因设备停机检修而导致的发电损失^[4]。据估算,此次修复工程减少发电损失约20万元,提高了电厂的经济效益和能源供应稳定性。

在环保效益方面,环氧树脂砂浆修复过程中VOC排放量仅0.8kg/m³,符合GB 30981-2020标准要求,较溶剂型涂料降低了90%。这有助于减少对环境的污染,保护生态环境,符合可持续发展的要求。

结语

环氧树脂砂浆通过合理的分子结构设计与骨料级配优化,能够同时满足爆气塔内壁对强度、韧性及耐久性的多重需求。其抗冲磨性能较传统材料提升5-8倍,在高速水流冲刷和气蚀作用下表现出色,有效保护了金属结构。采用分层施工与加强区设计,结合科学的材料配比和施工工艺控制,有效解决了气蚀密集区的修复难题。修复层使用寿命可达15年以上,显著降低了全生命周期成本,为工业设施的长期稳定运行提供了保障。低温固化体系与机械化施工工艺的开发,拓展了环氧树脂砂浆在复杂工况下的应用范围。该技术方案具有标准化、可复制的特点,为同类工业设施的修复工程提供了成功范例和有益借鉴。

参老文献

[1] 夏伟,白二雷,吕炎,等.高温养护条件下环氧树脂基砂浆早期性能研究[J].空军工程大学学报,2024,25(06):113-118+127.

[2]黄大岸,于跃,庞海涛,等.抗冲磨水性环氧树脂砂浆设计与试验[J].水电与抽水蓄能,2024,10(04):106-108+120.

[3]林淼.原材料配比对环氧树脂砂浆性能的影响[J].广东土木与建筑,2024,31(07):103-106+114.

[4]吕炎,白二雷,王志航,等.低温养护对环氧树脂基砂浆早期性能的影响及机理[J].材料导报,2024,38(05):102-107.