储能变电站土建工程施工常见问题及预防措施

王锐姣

乐山电力股份有限公司 四川 乐山 614000

摘 要:储能变电站作为新型电力系统关键部分,其土建工程有专业性强、场地受限、周期短、质量要求高、环保要求严、多专业协同作业等特点,对精度和耐久性要求高。然而,施工中常见地基处理不当、结构裂缝、质量控制不严、安全问题等。为此,需加强地基勘察与设计、优化结构设计、严控施工质量与进度、强化施工安全管理,以保障工程顺利推进与质量安全。

关键词: 储能变电站; 土建施工; 常见问题; 预防措施

1 储能变电站土建工程施工特点

储能变电站是新型电力系统关键部分, 承担电能储 存与调节重任,其土建工程特点鲜明,第一,专业性 高。储能变电站不同于普通变电站或工业建筑, 涉及锂 离子电池储能、铅酸蓄电池储能、液流电池储能等多种 电化学储能先进技术。不同技术对土建要求差异大,施 工人员除具备扎实土建知识,还需了解储能技术原理与 运行要求,以保证土建满足储能设备安装与运行需求; 第二,场地受限且布局紧凑。储能变电站常选址靠近负 荷中心或新能源发电场,以减少电能传输损耗,但这些 区域土地资源紧张,施工场地有限。在有限场地内,要 合理布置储能设备区、变电设备区、控制室、配电室等 多个功能区域,还要规划好设备运输、消防及人员疏散 通道。这要求土建工程在设计施工时精细规划管理, 充 分利用土地,确保各功能区域既独立又紧密联系,满足 运行维护需求[1]:第三、周期短目质量要求高。新能源发 电快速发展, 电力市场对储能需求大增, 储能变电站建 设项目增多。为尽快投入运行,发挥储能调节作用,业 主对施工周期要求严格。施工单位需在短时间内完成地 基处理、基础施工、主体结构建设等大量任务。同时, 储能变电站是电力系统重要节点, 运行安全性和可靠性 至关重要, 土建质量直接影响储能设备安装精度与运行 稳定性,质量问题可能引发设备损坏、停电等严重后 果, 所以施工过程中必须严格把控质量, 确保符合设计 与标准规范; 第四, 环保要求严格。储能变电站土建施 工会产生噪声、粉尘和建筑垃圾,对周边环境有影响。 随着社会环保意识增强,环保部门对建设项目环保要求 愈发严格。施工单位要采取设置围挡、洒水降尘、垃圾 分类处理等有效措施,减少施工污染。第五,多专业协 同要求高。储能变电站土建工程涵盖土建、电气、机 械、自动化等多个专业,各专业相互关联、相互影响。

施工时需各专业密切配合、协同作业,及时解决专业交 叉问题,确保土建工程与其他专业工程顺利衔接,保障 整体质量。

2 储能变电站土建工程施工核心要求

2.1 精度要求高

储能变电站土建工程的核心要求聚焦于高精度的施 工标准,设备基础施工方面,特别是电池簇与储能变流 器(PCS)的安装基础,对平整度、水平度和垂直度的要 求极为严苛。锂离子电池储能系统中的电池簇, 在运行 时会经历微小振动, 因此, 基础的不平整会导致电池簇 受力不均,进而影响其性能、缩减使用寿命,甚至诱发 安全隐患。为此,施工时必须借助高精度的测量仪器, 如激光扫描仪与精密水准仪,确保设备基础顶部预埋件 平整度偏差严格控制在3mm以内,以便于设备的安装。 建筑物的平面布置同样需准确的放线, 储能变电站功能 区域布局若超出允许范围,不仅会加大设备安装难度, 影响管道与电缆的顺畅敷设,增加施工成本,还会对变 电站的整体美观与运行效率构成不利影响。例如电缆沟 的走向与坡度则需严格遵循设计要求, 以确保电缆敷设 顺畅无阻且排水系统运作正常。为满足上述高精度施工 要求,施工单位需在施工前规划详尽的测量控制方案, 构建高精度测量控制网,实时监测并调整关键施工部 位。加强对施工人员的专业技能培训,提升其精度意识与 操作技能,确保土建工程各环节的施工精度均能满足设计 要求,为储能变电站的安全、高效运行奠定坚实基础。

2.2 耐久性要求

储能变电站土建工程需要具备较高的耐久性,以适应长期运行和各种恶劣环境条件。储能变电站通常运行寿命较长,一般在20年左右。在这么长的运行周期内,土建工程要承受设备的重量、运行时的振动以及自然环境的影响,如温度变化、湿度变化、风雨侵蚀、地震

等。土建工程的结构设计和材料选用必须充分考虑这些因素,确保工程在长期使用过程中不出现结构损坏、渗漏等质量问题。在结构设计方面,应根据储能变电站的规模、设备荷载和地质条件等因素,合理选择结构形式和结构尺寸。对于大型储能变电站,主体结构宜采用钢筋混凝土框架结构或钢结构,以提高结构的承载能力和抗震性能^[2]。同时,要加强对结构关键部位的设计,如设备基础、梁柱节点等,确保这些部位能够承受较大的荷载和应力。在材料选用方面,应优先选用质量可靠、耐久性好的建筑材料。例如,混凝土应采用高强度、低收缩、抗渗性能好的品种,钢筋应选用符合国家标准的热轧钢筋,并严格控制钢筋的锈蚀情况。对于外露的金属构件,应进行防腐处理,如热镀锌、涂刷防腐涂料等,以延长其使用寿命。

3 储能变电站土建工程施工常见问题

3.1 地基处理不当

地基是建筑物的基础,其质量直接影响到建筑物的安全和稳定。在储能变电站土建工程中,地基处理不当是一个较为常见的问题。一些施工单位在进行地基处理时,没有对施工现场的地质条件进行详细的勘察和分析,盲目采用传统的地基处理方法,导致地基承载力不足或不均匀沉降。例如,在软土地基上直接进行浅基础施工,没有进行地基加固处理,建筑物在使用过程中可能会出现墙体开裂、地面下沉等现象,严重影响储能设备的正常运行。另外,地基处理施工过程中也存在一些质量问题。如桩基施工时,桩位偏差过大、桩身质量缺陷等;强夯地基处理时,夯击能不足、夯击遍数不够等。这些问题都会导致地基处理效果达不到设计要求,为建筑物的安全留下隐患。

3.2 结构裂缝

结构裂缝是储能变电站土建工程中另一个常见的问题。结构裂缝的出现不仅会影响建筑物的美观,还会降低结构的承载能力和耐久性,严重时甚至会导致结构破坏。结构裂缝产生的原因主要有以下几个方面:一是混凝土收缩裂缝,混凝土在硬化过程中会发生收缩,如果收缩受到约束,就会在混凝土内部产生拉应力,当拉应力超过混凝土的抗拉强度时,就会产生裂缝。例如,大体积混凝土在浇筑后,由于内外温差较大,会产生温度收缩裂缝;混凝土养护不当,表面水分蒸发过快,也会产生干缩裂缝。二是地基不均匀沉降引起的裂缝,当地基承载力不均匀或建筑物各部分荷载差异较大时,建筑物会发生不均匀沉降,从而导致结构产生裂缝。这种裂缝通常呈倾斜状,且宽度和长度会随着不均匀沉降的发

展而增大。三是施工荷载过大或施工顺序不当引起的裂缝,在施工过程中,如果过早拆除模板、堆放材料过多或施工顺序不合理,会使结构承受过大的荷载,导致结构产生裂缝。

3.3 施工质量控制不严

施工质量控制是储能变电站土建工程的关键环节, 然而,在构造柱、现浇带、门窗洞口过梁设置以及梁底 砌体立砖斜砌等方面,常出现质量控制不严的问题。在 构造柱的施工上,一些施工单位为赶工期或降低成本, 忽视构造柱的配筋和混凝土浇筑质量,导致构造柱强度 不足,无法有效承担结构荷载和抗震作用。超高墙体现 浇带作为砌体结构重要构造, 其施工质量的优劣直接影 响到结构的整体性和稳定性。但在实际施工中,常出现 未严格按设计设置现浇带的现象,导致墙体开裂。门窗 洞口过梁的设置也是施工质量控制中的一个薄弱环节, 过梁作为支撑门窗洞口上方荷载的重要构件,其尺寸、 配筋和安装位置均需严格按照设计要求进行。然而,一 些施工单位在施工过程中随意更改过梁尺寸,或使用过 薄的过梁材料,导致过梁承载能力下降,存在安全隐 患。另外,在梁底砌体立砖斜砌方面,施工质量问题同 样不容忽视。梁底砌体的斜砌能够增强砌体的整体稳定 性和抗震性能, 但一些施工单位在斜砌过程中未严格按 照施工工艺进行,导致斜砌质量差,甚至出现漏砌、错 砌等现象,严重影响了砌体的整体质量[3]。

3.4 施工安全问题

储能变电站土建工程施工过程中存在着多种安全风险,如高处坠落、物体打击、触电、机械伤害等。由于储能变电站土建工程通常涉及高处作业、交叉作业和大型机械设备的使用,如果施工单位安全管理不到位,施工人员安全意识淡薄,就容易引发安全事故。例如,在高处作业时,施工人员未正确佩戴安全带或安全带挂设不牢固,可能会发生高处坠落事故;在交叉作业时,上方作业人员随意抛掷物品,可能会砸伤下方施工人员;施工现场临时用电线路乱拉乱接,电气设备未按规定进行接地接零保护,可能会导致触电事故;大型机械设备操作人员未经过专业培训或违规操作,可能会引发机械伤害事故。

4 储能变电站土建工程施工常见问题的预防措施

4.1 加强地基勘察与设计

为了预防地基处理不当问题,施工单位应加强地基 勘察工作。在工程开工前,委托具有相应资质的地质勘 察单位对施工现场进行详细的地质勘察,获取准确的地 质资料,包括土层的分布、性质、承载力等。根据地质 勘察结果,结合储能变电站的建筑特点和荷载要求,进行科学合理的地基设计。对于软土地基、膨胀土地基等特殊地基,应采用针对性的地基处理方法,如换填垫层法、强夯法、桩基础等,并进行地基处理效果的检测和验收,确保地基承载力和变形满足设计要求。

4.2 优化结构设计方案

针对结构裂缝问题,应从优化结构设计方案入手。 在设计阶段,设计人员应充分考虑混凝土收缩、地基不 均匀沉降等因素对结构的影响,合理设置伸缩缝、沉 降缝和后浇带。对于大体积混凝土结构,应采取有效的 温度控制措施,如采用低热水泥、优化混凝土配合比、 埋设冷却水管等,减少混凝土内外温差,防止温度裂缝 的产生。同时,要加强对结构构件的配筋设计,提高结 构的抗裂性能。在施工过程中,应严格按照设计要求进 行施工,控制好混凝土的浇筑质量、养护时间和施工荷 载,避免因施工不当引起结构裂缝。

4.3 严格控制施工质量和进度

为了确保储能变电站土建工程的施工质量,施工单 位应建立健全质量管理体系,加强对施工全过程的质量 控制。在材料采购方面,要严格审查供应商的资质和信 誉,选择质量可靠、信誉良好的供应商提供建筑材料和 构配件。对进场的材料和构配件要进行严格的检验和验 收,确保其质量符合设计要求和相关标准规范。在施工 过程中,要加强对施工工艺的质量控制,严格按照施工 工艺标准进行施工。例如,在混凝土浇筑过程中,要控 制好混凝土的浇筑顺序、振捣时间和养护条件; 在钢筋 焊接过程中,要确保焊接质量符合规范要求。加强质量 检验和验收工作,建立完善的质量检验制度,对每一道 工序进行质量检查,合格后方可进行下一道工序施工。 在工程竣工验收时,要严格按照验收标准进行验收,对 不符合质量标准的工程要坚决返工整改,确保工程质量 达到设计要求。在控制施工质量的同时, 也要合理安排 施工进度。施工单位应根据工程合同要求和实际情况, 制定科学合理的施工进度计划,并严格按照计划组织施 工。在施工过程中,要合理调配人力、物力和财力资 源,确保施工进度不受影响。同时要加强对施工进度的 监控和调整,及时解决施工过程中出现的影响进度的问 题,确保工程能够按时完工。

4.4 加强施工安全管理

施工安全是储能变电站土建工程顺利进行的保障,施工单位应高度重视施工安全管理工作。首先,要建立健全安全管理体系,明确各级管理人员和施工人员的安全职责,签订安全生产责任书,将安全责任落实到每个人。其次,要加强对施工人员的安全教育培训,提高施工人员的安全意识和自我保护能力。培训内容包括安全法律法规、安全操作规程、事故案例分析等,使施工人员了解施工过程中的安全风险和防范措施^[4]。再次,要加强施工现场的安全管理,设置明显的安全警示标志,规范施工现场的临时用电、机械设备使用、高处作业等行为。最后,要定期进行安全检查和隐患排查治理工作,及时发现和消除施工现场的安全隐患。对发现的安全问题要建立台账,明确整改责任人和整改期限,跟踪整改情况,确保安全隐患得到彻底消除。

结束语

储能变电站土建工程意义重大,其施工特点鲜明且要求严格。常见问题涉及地基、结构、质量、安全等多个方面,给工程带来诸多隐患。通过采取针对性预防措施,从勘察设计到施工管理,全方位把控,能有效避免问题发生。未来,随着储能技术发展,需持续优化施工方法,提升管理水平,保障储能变电站土建工程高质量建设,推动电力系统稳定发展。

参考文献

[1]朱晓菁.变电站土建工程作业质量控制措施[J].土建技术研究, 2020, 3(8):62-63.

[2]孙凯.变电站土建结构设计存在的问题及处理方案 研究[J].工程建设与设计,2020(24):18-19.

[3]吴小雷.变电站土建工程基础施工技术探析[J].科技风,2020(18):168-169.

[4]刘飞.装配式电缆沟在当前变电站土建工程中的应用研究[J].科技创新与应用,2020(36):148-149.