建筑工程施工中的节能施工技术

李志伟

河北建设集团股份有限公司 河北 保定 071000

摘 要:建筑工程节能施工技术贯穿建筑全生命周期,具综合性、动态性与系统性特点。其重要性体现在应对能源危机、降低建筑能耗及促进可持续发展。关键节能技术涵盖建筑围护结构节能、可再生能源利用、施工过程能源管理以及新型节能材料与工艺。通过某绿色住宅小区和某公共建筑零能耗施工两个案例,展现了节能施工技术的实践成效,为建筑工程节能提供了有益参考。

关键词:建筑工程;节能施工;绿色建筑;可再生能源;施工技术优化

1 建筑工程节能施工技术概述

1.1 节能施工技术的概念与特点

建筑工程节能施工技术是指在建筑工程的规划、设 计、施工及运营等全生命周期内,通过采用先进的技术 手段、科学的管理方法和合理的材料选用,最大限度地 减少能源消耗、提高能源利用效率,降低对环境负面影 响的一系列施工技术和措施。其特点显著。首先,具有 综合性。节能施工技术并非单一技术的运用,而是涵盖 了建筑结构、电气、暖通、给排水等多个专业领域技术 的综合集成。例如,在建筑围护结构设计中,需要综合 考虑墙体、门窗、屋面的保温隔热性能, 这涉及到材料 科学、热工学等多个学科知识;同时,还要与建筑内部 的电气照明、空调通风等系统相协调, 实现整体节能效 果。其次,具有动态性。随着科技的不断进步和人们对 节能要求的日益提高, 节能施工技术也在不断发展和更 新。新的节能材料、设备和工艺不断涌现,如太阳能光 伏一体化技术、地源热泵技术等,为建筑工程节能提供 了更多的选择和可能[1]。另外,节能施工技术的应用还 需要根据不同的建筑类型、功能需求、地理位置和气候 条件等因素进行动态调整和优化,以达到最佳的节能效 果。最后,具有系统性。节能施工技术的实施需要从建 筑项目的整体出发,进行系统规划和设计。在施工过程 中,要建立完善的节能管理体系,加强对施工人员的培 训和管理,确保各项节能措施得到有效落实。

1.2 节能施工技术的重要性

1.2.1 应对能源危机

当前,全球面临着严峻的能源危机,传统化石能源的储量日益减少,且其开采和使用过程中带来的环境污染问题也愈发严重。建筑工程作为能源消耗的大户,其能耗占社会总能耗的较大比例。据统计,在我国,建筑能耗约占全社会总能耗的30%左右,并且随着城市化进程

的加快和人们生活水平的提高,这一比例还在呈上升趋势。因此,推广和应用节能施工技术,降低建筑工程的能源消耗,对于缓解能源危机、保障国家能源安全具有重要意义。通过采用高效的保温隔热材料、节能型的门窗、智能化的能源管理系统等节能技术和措施,可以有效减少建筑物在采暖、空调、照明等方面的能源消耗,提高能源利用效率,从而降低对传统能源的依赖,为应对能源危机做出积极贡献。

1.2.2 降低建筑能耗

节能施工技术的核心目标之一就是降低建筑能耗。 在建筑物的全生命周期中,运营阶段的能耗占据了主导地位。通过在施工过程中应用节能技术,可以从源头上减少建筑物未来的能源消耗。同时,合理设计建筑的采光和通风系统,充分利用自然光和自然通风,减少人工照明和机械通风的使用时间,也能显著降低建筑的能耗。另外,选用高效的节能设备和电器,如节能灯具、高效空调机组等,并采用智能化的控制系统对其进行精确控制,进一步提高能源利用效率,实现建筑能耗的有效降低。

1.2.3 促进可持续发展

可持续发展是当今社会发展的主题,强调经济、社会和环境的协调发展。建筑工程作为社会经济发展的重要组成部分,其发展模式对可持续发展目标的实现具有重要影响。节能施工技术的应用符合可持续发展的理念,它不仅有助于减少能源消耗和环境污染,还能推动建筑行业的技术创新和产业升级。通过发展节能施工技术,可以促进新型节能材料、设备和工艺的研发和应用,带动相关产业的发展,创造更多的就业机会。节能建筑的使用可以为居民提供更加舒适、健康的居住和工作环境,提高人们的生活质量,促进社会的和谐发展。

2 建筑工程施工中的关键节能技术

2.1 建筑围护结构节能技术

建筑围护结构是建筑物与外界环境进行热量交换的 主要界面,其保温隔热性能直接影响着建筑物的能耗。 因此,提高建筑围护结构的节能性能是建筑工程节能的 关键环节之一。在墙体节能方面,常见的节能技术包括 采用新型保温材料和复合墙体结构[2]。新型保温材料如 聚苯板、岩棉板、泡沫玻璃等, 具有导热系数低、保温 性能好等优点。将这些保温材料与墙体材料复合,形成 复合墙体,可以有效提高墙体的保温隔热性能。还有一 些新型的墙体材料,如加气混凝土砌块、空心砖等,本 身具有一定的保温性能,也可用于建筑墙体的砌筑。门 窗是建筑围护结构中热损失较大的部位, 因此门窗节能 技术也至关重要。目前,常用的门窗节能措施包括采用 节能型门窗框料、中空玻璃和密封技术等。节能型门窗 框料如断桥铝合金、塑钢等, 具有良好的隔热性能, 可 以有效阻止热量的传递。中空玻璃由两层或多层玻璃组 成,中间填充干燥空气或惰性气体,具有优异的隔热和 隔音性能。同时, 合理的门窗密封设计可以减少空气渗 透,降低因冷风渗透而导致的能量损失,还可以根据建 筑物的朝向和使用功能, 合理设计门窗的大小和开启方 式, 充分利用自然采光和通风, 减少人工照明和机械通 风的使用。屋面节能技术主要包括采用保温隔热层和倒 置式屋面等,在屋面铺设保温隔热材料,如聚苯板、挤 塑板等,可以有效阻止热量的传递,降低屋面的传热系 数。倒置式屋面是将保温层置于防水层之上,这种构造 方式可以保护防水层不受外界环境的影响,延长防水层 的使用寿命,同时还能提高屋面的保温隔热性能。此 外,还可以在屋面设置绿化或太阳能集热器等,进一步 发挥屋面的节能和环保作用。

2.2 可再生能源利用技术

可再生能源具有清洁、无污染、可再生的特点,在 建筑工程中合理利用可再生能源,可以有效减少对传统 能源的依赖,降低建筑能耗和环境污染。太阳能是一种丰富的可再生能源,在建筑工程中的应用十分广泛。 太阳能光伏发电技术是将太阳能转化为电能的技术,通 过在建筑物的屋顶、墙面等部位安装太阳能光伏板,可 以将太阳能直接转化为电能,为建筑物内的电器设备供 电。太阳能热水系统则是利用太阳能集热器收集太阳辐射能,将水加热后储存起来,为建筑物提供生活热水。 太阳能还可以用于建筑物的采暖和空调系统,如太阳能 吸收式制冷系统等。地源热泵技术也是一种高效的可再 生能源利用技术,它利用地下浅层地热资源(如土壤、 地下水或地表水)作为冷热源,通过输入少量的高品位 能源(如电能),实现低温位热能向高温位转移,为建 筑物提供采暖、制冷和生活热水。地源热泵系统具有高效节能、环保无污染、运行稳定可靠等优点,广泛应用于各类建筑工程中。风能也是一种可利用的可再生能源,在建筑工程中,可以通过合理设计建筑的布局和外形,利用自然通风来改善室内空气质量和热环境,减少机械通风的使用。在一些风力资源丰富的地区,还可以考虑安装小型风力发电机,为建筑物提供部分电能。

2.3 施工过程能源管理技术

施工过程能源管理技术是指通过对施工过程中的能 源消耗进行监测、分析和控制,采取有效的节能措施, 降低施工过程中的能源浪费,提高能源利用效率。建立 能源管理体系是施工过程能源管理的基础,施工单位应 制定完善的能源管理制度和考核办法, 明确各部门和岗 位的能源管理职责,将能源管理目标分解到各个施工环 节和项目中。同时要建立能源消耗统计台账, 对施工过 程中的能源消耗情况进行实时监测和记录,为能源分析 和决策提供依据。优化施工方案和施工工艺也是施工过 程节能的重要措施[3]。在施工方案设计中,应充分考虑节 能因素, 合理安排施工顺序和施工时间, 避免设备的频 繁启停和空载运行。同时要选用节能型的施工设备和机 械,如高效节能的塔吊、施工电梯等,并定期对设备进 行维护和保养,确保设备处于良好的运行状态,提高设 备的能源利用效率。加强施工现场的能源监测和控制也 是关键,通过安装能源监测设备,对施工现场的电力、 燃气、水资源等能源消耗情况进行实时监测和分析,及 时发现能源浪费问题并采取相应的措施进行调整。还可 以采用智能化的控制系统对施工现场的照明、通风、空 调等设备进行集中控制和自动化管理,根据实际需求自 动调节设备的运行状态,避免能源的浪费。

2.4 新型节能材料与工艺

随着科技的不断进步,新型节能材料和工艺不断涌现,为建筑工程节能提供了更多的选择和可能。新型保温材料是节能材料的重要组成部分,除了前面提到的聚苯板、岩棉板等传统保温材料外,近年来还出现了一些新型的保温材料,如真空绝热板、气凝胶毡等。真空绝热板是一种利用真空绝热原理制成的超高效保温材料,其导热系数极低,保温性能优异,广泛应用于冷库、冰箱等对保温要求较高的领域。气凝胶毡是一种以纳米二氧化硅气凝胶为主体材料,通过特殊工艺复合而成的柔性保温毡,具有导热系数低、质量轻、防火性能好等优点,可用于建筑墙体、屋面、管道等部位的保温隔热。新型节能玻璃也是建筑节能的重要材料之一,除了中空玻璃外,还有低辐射玻璃(Low-E玻璃)、真空玻璃等。

Low-E玻璃是在玻璃表面镀上一层或多层金属或其他化合物组成的膜系,具有优异的隔热和保温性能,可以有效阻止室内热量的散失和室外热量的进入。真空玻璃是将两片玻璃之间抽成真空,并在玻璃之间设置支撑物,以保持玻璃的间距和稳定性。真空玻璃具有极低的导热系数,保温性能比中空玻璃更好,是一种极具发展潜力的节能玻璃。在施工工艺方面,一些新型的施工技术和方法也不断应用于建筑工程中。例如,预制装配式建筑技术是一种将建筑构件在工厂预制生产,然后运输到施工现场进行组装的新型建筑施工方式。这种施工方式具有施工速度快、质量可控、节能环保等优点。在预制构件生产过程中,可以采用先进的生产工艺和设备,提高构件的精度和质量,减少施工现场的湿作业和建筑垃圾的产生。同时,预制装配式建筑还可以实现建筑构件的标准化和通用化,提高建筑材料的利用率,降低能源消耗。

3 节能施工技术的工程应用案例分析

3.1 案例一: 某绿色住宅小区节能施工实践

某绿色住宅小区位于城市郊区,建筑面积约20万平方 米,由多栋高层住宅楼及配套设施构成。建设时充分考虑 节能环保, 广泛应用节能施工技术。建筑围护结构上, 住 宅楼采用外墙外保温系统,保温材料为聚苯板,厚度依 朝向和楼层优化;门窗用断桥铝合金型材与中空玻璃, 提升保温隔热性能;屋面为倒置式,保温层是挤塑板, 还设太阳能集热器供热水。可再生能源利用方面,安装 太阳能光伏发电系统,在屋顶和车库顶部铺光伏板,发 电满足部分公共照明和电梯用电后并入电网;采用地源 热泵系统为住宅楼供暖制冷, 机组合理配置, 通过地下 埋管换热器与土壤换热。施工过程能源管理上,施工单 位建立完善能源管理体系,制定制度与考核办法。优化 施工方案和工艺, 合理安排施工, 避免设备频繁启停和 空载;选用节能设备并加强维护;安装能源监测设备, 实时监测分析能源消耗,及时解决浪费问题[4]。该小区应 用节能技术后成效显著,与传统小区比,建筑能耗降30% 以上,可再生能源利用率超20%,减少对传统能源依赖, 降低污染,为居民提供舒适健康居住环境。

3.2 案例二:某公共建筑零能耗施工创新

某公共建筑集办公、会议、展览等功能于一体,建 筑面积约5万平方米,以实现零能耗为目标,采用一系列 创新节能技术措施。建筑围护结构设计上,外墙采用真 空绝热板复合墙体,导热系数低,保温性能好;门窗用 三层中空玻璃和智能遮阳系统,能依室外光照和室内温 度自动调节遮阳帘;屋面采用太阳能光伏一体化设计, 将光伏板与屋面材料结合,兼顾防水、保温与太阳能利 用。可再生能源利用方面,除屋面太阳能光伏系统外, 周边设地源热泵系统,通过地下埋管换热器为建筑供 暖、制冷和生活热水;建筑顶部和周边合适位置装小型 风力发电机,为部分电器供电。能源管理系统上,采用 智能化管理,对建筑内能源消耗设备集中监控和自动化 管理。安装大量传感器和智能仪表,实时采集能源消耗 数据,依数据分析自动调整设备运行参数,实现能源优 化配置。如智能照明系统能根据室内光照和人员活动调 节灯光。该公共建筑应用创新节能技术后实现零能耗, 运营中可再生能源满足自身需求,减少对传统能源依 赖,降低运营成本,为其他公共建筑节能建设提供宝贵 经验借鉴。

结束语

建筑工程节能施工技术对于缓解能源危机、降低能耗、推动可持续发展意义重大。本文阐述的多种关键节能技术及工程应用案例表明,合理运用这些技术能显著提升建筑节能效果。未来,应持续加大节能施工技术研发与应用力度,不断探索创新,让更多节能技术融入建筑工程,为构建绿色、低碳、可持续的社会贡献力量。

参考文献

[[1]张晓红.绿色节能技术在建筑工程施工中应用初探 [J].四川水泥, 2021,(7): 132~133.

[2]杨晶晶.浅谈绿色节能建筑施工技术应用策略[J].四 川水泥, 2021, (7): 137~138.

[3]包永平.浅析建筑工程施工中的绿色节能施工技术 [J].房地产世界, 2022(12): 79-81.

[4]孙盘龙.浅析建筑工程施工中的绿色节能施工技术 [J].陶瓷, 2022(05):149-151.