煤化工企业生产过程中的泄漏管理与控制

吕 鹏

国家能源集团宁夏煤业有限责任公司煤制油分公司 宁夏 银川 750411

摘 要:煤化工产业在我国能源体系中至关重要,其生产工艺复杂,涉及大量危险化学品,生产规模大,泄漏风险高。本文阐述了煤化工企业泄漏的表现形式,如管道、阀门、法兰连接处泄漏等,分析了其危害及产生原因,包括人的因素和物的因素。并从提高认识、源头控制、设备监测、维护保养、设置防护监控设施等方面提出管理与控制措施,还介绍了泄漏检测与堵漏技术,以保障企业安全生产。

关键词: 煤化工企业; 泄漏管理; 泄漏控制

1 煤化工企业的重要性和特点概述

煤化工产业作为我国能源体系中的关键组成部分, 具有不可替代的重要地位。我国能源结构呈现出"富煤、 贫油、少气"的显著特征,煤炭资源储量丰富且分布广 泛,这为煤化工产业的发展提供了坚实的物质基础。煤 化工企业通过一系列先进的工艺技术,将煤炭转化为各 类清洁高效的燃料以及高附加值的化工产品,如煤气化 可生产合成气,进而制取甲醇、合成氨等;煤液化能获 得清洁的液体燃料,有效缓解我国对石油资源的过度依 赖,保障国家能源安全。煤化工产业在推动地方经济发 展方面发挥着重要作用。众多煤化工项目在煤炭资源丰 富的地区落地生根,带动当地相关产业的协同发展,创 造大量的就业机会,促进区域经济的繁荣。煤化工技术 的不断创新与进步,有助于推动我国化工行业整体技术 水平的提升,增强我国在全球化工领域的竞争力[1]。煤 化工企业具有鲜明的特点,其生产工艺复杂多样,涵盖 了煤气化、煤液化、煤焦化等多个领域,每个领域又包 含众多细分工艺,且不同工艺之间的衔接紧密,对生产 过程中的温度、压力、物料配比等参数要求极为严格, 任何一个环节出现偏差都可能影响整个生产流程的稳定 运行。煤化工生产涉及大量易燃易爆、有毒有害的化学 品,如煤气、苯、甲醇等,这些物质具有较高的危险 性,一旦发生泄漏,极易引发火灾、爆炸、中毒等严重 事故,对人员生命安全和企业财产造成巨大损失。煤化 工企业生产规模通常较大,设备众多且分布广泛,从原 料的储存与输送,到反应装置的运行,再到产品的分离 与提纯,各个环节都需要大量的设备支持,设备的正常 运行与维护管理至关重要。

2 煤化工企业生产过程中的泄漏表现形式及危害

2.1 泄漏的表现形式

在煤化工企业生产过程中,泄漏现象表现形式多

样。首先是管道泄漏,煤化工生产中管道纵横交错,用于输送各种物料和介质。由于管道长期承受内部介质的压力、腐蚀以及外部环境的侵蚀,加之安装质量、焊接工艺等因素影响,管道容易出现裂缝、砂眼等缺陷,导致物料泄漏。阀门泄漏也是常见问题。阀门作为控制流体通断和调节流量的关键部件,在频繁开关过程中,阀瓣与阀座之间的密封面容易磨损,导致密封不严,出现内漏或外漏现象。如蒸汽阀门内漏,会使蒸汽能量投水,影响生产效率;而有毒有害介质阀门外漏,则会直接威胁周边人员安全。设备法兰连接处泄漏同样不容忽视。法兰连接是煤化工设备与管道连接的重要方式,在长期运行过程中,法兰密封垫片可能因老化、变形、选型不当等原因失去密封作用,导致介质从法兰连接处泄漏。设备本身的缺陷,如设备壳体存在裂纹、焊缝质量不佳等,也可能引发泄漏事故。

2.2 泄漏的危害

泄漏对煤化工企业造成的危害是多方面的且极为严重。从安全角度来看,易燃易爆物料泄漏后,与空气混合形成爆炸性混合物,一旦遇到点火源,如明火、静电、电气火花等,就会引发剧烈的爆炸和火灾事故,造成大量人员伤亡和设备损毁。有毒有害物质泄漏,如硫化氢、一氧化碳等,会使周边环境中的有毒气体浓度迅速升高,人员吸入后会导致中毒、窒息,严重时甚至危及生命。泄漏还会对环境造成严重污染。煤化工生产中的许多化学品具有毒性、腐蚀性和难降解性,一旦泄漏进入土壤、水体,会破坏土壤结构,影响土壤肥力,导致农作物减产甚至绝收;污染地表水和地下水,影响水生生物的生存和水资源的可持续利用,对生态环境造成长期难以恢复的破坏^[2]。泄漏事故还会给企业带来巨大的经济损失。泄漏导致的物料损失直接增加了生产成本;因事故引发的设备损坏维修、停产整顿等费用高昂;同

时,企业还可能面临法律诉讼和巨额赔偿,严重影响企业的经济效益和声誉,甚至可能导致企业破产倒闭。

3 煤化工企业泄漏产生的原因分析

3.1 人的因素

人的因素在煤化工企业泄漏事故中占据重要地位。 操作人员的安全意识淡薄是导致泄漏的常见原因之一。 部分操作人员在日常工作中对安全规章制度不够重视, 存在违规操作行为, 如在未进行充分安全检查的情况下 启动设备、未按照操作规程进行物料添加等,这些违规 操作可能引发设备故障或物料泄漏。操作人员的技能水 平不足也会增加泄漏风险。煤化工生产工艺复杂,对操 作人员的专业知识和技能要求较高。如果操作人员对设 备性能、工艺流程不熟悉,在遇到突发情况时无法及 时、正确地采取应对措施,就可能导致泄漏事故扩大。 例如,在设备出现异常振动或温度升高时,不能准确判 断故障原因并及时处理,最终引发泄漏。企业管理人员 的安全管理不到位同样不容忽视。另外,一些企业管理 层对安全生产重视程度不够,安全管理制度不完善,安 全培训教育流于形式,对设备维护保养和安全检查工作 监督不力, 使得企业整体安全氛围不浓厚, 为泄漏事故 的发生埋下隐患。

3.2 物的因素

物的因素也是引发煤化工企业泄漏的重要原因。设备老化是导致泄漏的常见问题。随着使用时间的增长,煤化工设备不可避免地会出现磨损、腐蚀、疲劳等现象,设备的性能逐渐下降,密封性能变差,从而增加泄漏的可能性。设备选型不当也会引发泄漏。在煤化工项目建设和设备选型过程中,如果对生产工艺特点和物料特性考虑不充分,选择了不适合的设备,就可能在生产过程中出现泄漏问题。设备制造质量缺陷同样不可忽视。部分设备在制造过程中,由于生产工艺、原材料质量等问题,可能存在砂眼、裂纹等缺陷,这些缺陷在设备安装和运行初期可能不易被发现,但随着使用时间的推移,会逐渐扩大,最终导致泄漏事故发生。

4 煤化工企业泄漏管理与控制措施

4.1 提高认识,加强管理

煤化工企业应高度重视泄漏管理工作,从企业领导到基层员工,都要充分认识到泄漏事故的严重危害,树立"安全第一、预防为主"的理念。企业应建立健全安全管理体系,明确各级管理人员和员工在泄漏管理中的职责,将泄漏管理工作纳入企业绩效考核体系,确保各项安全措施得到有效落实。加强安全教育培训,提高员工的安全意识和操作技能^[3]。定期组织员工参加安全知识

培训和应急演练,使员工熟悉泄漏事故的危害、预防措施和应急处理方法,增强员工在面对突发泄漏事故时的 应急处置能力。

4.2 从源头抓起,消除泄漏隐患

在项目设计和设备选型阶段,要充分考虑生产工艺特点和物料特性,选择质量可靠、性能优良、密封性好的设备和材料。严格把控设备制造质量,加强对设备供应商的管理和监督,确保设备在出厂前经过严格的质量检测,杜绝质量缺陷设备进入企业。在设备安装过程中,要严格按照安装规范进行操作,确保设备安装质量。安装完成后,要进行全面的调试和验收,对设备的密封性能进行严格检查,确保设备无泄漏隐患后方可投入使用。

4.3 做好设备监测, 预测泄漏趋势

在煤化工企业的运营中,做好设备监测以预测泄漏趋势是保障安全生产的关键环节。需充分运用先进的监测技术和设备,对关键设备和管道展开全方位、实时性的监测工作。利用红外热成像技术,可快速检测设备表面的温度分布情况,通过温度异常来判断设备是否存在过热、泄漏等潜在问题。安装气体泄漏检测报警装置,能对生产区域内的可燃气体、有毒气体浓度进行实时监测,一旦浓度超出安全标准,便会立即发出警报。通过对这些监测数据的深入分析和处理,建立详细的设备健康档案,再借助大数据分析和人工智能技术,精准预测设备泄漏趋势,提前发现潜在的泄漏风险,以便及时采取维护和修复措施,将泄漏事故扼杀在萌芽状态。

4.4 正确使用和维护保养设备

正确使用和维护保养设备是确保煤化工企业稳定运行、减少泄漏事故的重要举措。要制定科学合理的设备操作规程,明确每一步操作的标准和要求,操作人员必须严格按照规程进行设备操作,坚决杜绝违规操作行为。在设备运行过程中,加强巡回检查力度,密切关注设备的各项运行参数和状态,如压力是否稳定、温度是否适宜、流量是否正常、振动是否在合理范围等,一旦发现异常情况,立即采取有效的处理措施。建立完善的设备维护保养制度,定期对设备进行全面的维护保养,包括清洁设备表面和内部的污垢、为设备添加适量的润滑油以减少磨损、紧固松动的螺栓和部件、调整设备的运行参数等,确保设备始终处于良好的运行状态。对于易损件,要定期进行检查和更换,保证设备的密封性能,做好设备维护保养记录,为设备的检修和更换提供详细、准确的依据。

4.5 设置防护监控设施

在煤化工企业生产区域设置完善的防护监控设施,是应对泄漏事故、保障人员和财产安全的重要防线。要构建包括防爆墙、防火墙、防火堤等在内的多层次防护体系,这些设施能够在泄漏事故发生时,有效阻止火势蔓延和爆炸冲击波的扩散,防止事故进一步扩大和蔓延。在关键设备和管道周围设置围堰,当发生泄漏时,围堰可以阻止泄漏物料外流,将其控制在一定范围内,便于后续的收集和处理,避免对周边环境造成污染。安装视频监控系统,对生产区域进行全方位、全过程的实时监控,能够及时发现设备异常、人员违规操作等异常情况,并迅速采取相应的措施。同时在生产区域设置明显的安全警示标志,以醒目的颜色和简洁的文字提醒员工时刻注意安全,严格遵守操作规程,营造良好的安全生产氛围,从源头上减少泄漏事故的发生。

5 泄漏的检测与堵漏技术措施

5.1 泄漏的检测方法

泄漏检测方法多种多样,常见的有直观检测法,通 过人的视觉、嗅觉、听觉等感官直接观察设备表面是否 有泄漏迹象, 如是否有液体渗漏、气体逸出、异常声响 等。这种方法简单易行,但对于一些微小泄漏或隐蔽部 位的泄漏难以发现。压力检测法是利用压力传感器检测 设备或管道内的压力变化来判断是否发生泄漏。当设备 或管道发生泄漏时,内部压力会下降,通过监测压力变 化可以及时发现泄漏情况。该方法适用于密封性能要求 较高的设备和管道。超声波检测法是利用超声波探测仪 检测设备内部因泄漏产生的超声波信号,从而确定泄漏 位置和泄漏程度。该方法对微小泄漏敏感度高, 能够检 测到一些常规方法难以发现的泄漏点,适用于各种设备 和管道的泄漏检测。示踪气体检测法是将一种易于检测 的示踪气体(如氦气)注入到设备或管道内,然后使用 气体检测仪在设备外部检测示踪气体的泄漏情况,从而 确定泄漏位置。该方法检测精度高,但操作相对复杂, 成本较高。

5.2 堵漏技术措施

针对不同的泄漏情况,可采用相应的堵漏技术措

施。对于管道的小孔泄漏,可采用打卡子、塞堵等方法 进行临时堵漏,然后再进行永久性修复。打卡子是在泄 漏部位周围安装一个特制的卡子,通过紧固卡子上的螺 栓, 使卡子内的密封材料紧紧压在泄漏孔上, 达到堵漏 目的[4]。塞堵则是用合适的材料(如木楔、橡胶塞等) 直接塞入泄漏孔中进行堵漏。对于阀门泄漏, 可根据泄 漏原因采取不同的处理方法。如果是阀门密封面磨损导 致泄漏,可采用研磨、堆焊等方法修复密封面:如果是 阀门填料泄漏, 可适当紧固填料压盖或更换填料。对于 设备法兰连接处泄漏,可先紧固法兰螺栓,看是否能消 除泄漏。如果紧固无效,可采用更换密封垫片、注入密 封胶等方法进行堵漏。对于较大的泄漏或危险性较高的泄 漏,可采用带压堵漏技术。带压堵漏是在设备或管道不停 车的情况下,采用专门的堵漏工具和密封材料,在泄漏部 位建立一个新的密封结构, 阻止介质泄漏。常用的带压 堵漏方法有注剂式堵漏、捆绑式堵漏、顶压式堵漏等。

结束语

煤化工企业生产过程中的泄漏管理与控制至关重要,关乎人员安全、环境保护和企业经济效益。泄漏表现形式多样、危害严重,原因涉及人与物多方面。企业需从提高认识、源头把控、设备监测维护、设置防护设施等多维度加强管理,灵活运用多种检测与堵漏技术。只有全方位落实各项措施,才能有效降低泄漏风险,推动煤化工产业安全、稳定、可持续发展。

参考文献

[1]胡炳旭.化工设备管理的重要性及其实施路径[J].化工管理, 2021(33): 170-171.

[2]郝明华.煤化工企业VOCs尾气焚烧治理工艺探讨 [J].河南化工, 2022, 39(9): 42-43.

[3]卢立栋,王浩,李媛媛.关中地区典型煤化工行业 VOCs排放系数与特征研究[J].煤化工,2022,50(4): 15-20.

[4]赵品.煤化工气化炉工艺技术在煤化工企业掺烧中的应用[J].化工设计通讯,2022,48(8):7-9.