数字化测绘技术在水利工程测量中的应用研究

徐立明 顾 江 石嘴山市水利勘测设计院有限公司 宁夏 石嘴山 753000

摘 要:本文聚焦数字化测绘技术在水利工程测量中的应用。阐述了水利工程测量的内容、特点及在工程建设各阶段的作用,介绍数字化测绘技术的概念与优势。随后详细探讨其在水利工程前期规划(地形测量、水下地形测量、地质勘察辅助测量)、施工建设(施工控制测量、放样、过程监测)、运营维护(变形监测、水库库容动态监测、设施设备维护管理)中的应用,为水利工程测量提供高效精准的技术支持。

关键词:数字化测绘技术;水利工程测量;应用研究

1 水利工程测量概述

1.1 水利工程测量的内容与特点

水利工程测量是水利工程建设关键环节,内容丰 富。前期规划时,需对工程区域地形、地貌、地物、地 质等自然条件详细测量。地形测量至关重要,要精准获 取地面高程、坡度、坡向等信息,绘制精确地形图,帮 助设计人员直观了解地形、地物、地貌, 合理规划设计 位置与布局。水下地形测量在涉及水库、池塘、河道沟 渠等水域工程中不可或缺, 能掌握水底地形起伏与淤积 情况,对确定水库库容、设计河道沟渠整治方案意义重 大。地质勘察辅助测量通过测量获取地质构造、岩土性 质等信息,为水利工程基础设计与施工提供地质依据^[1]。 水利工程测量特点鲜明,其一,规模大、范围广,测量 工作量大,如大型水库(拦蓄滞洪区)工程可能需测量 数平方公里甚至数十平方公里区域。其二,对测量精度 要求高,建筑物定位、高程控制及地形测量均需达到高 精度标准,以保障工程安全稳定运行。其三,受自然条 件影响大, 野外作业时, 恶劣天气、复杂地形地貌等会 给测量工作带来诸多困难。

1.2 水利工程测量在工程建设中的作用

水利工程测量在水利工程建设各阶段作用关键。前期规划阶段,准确测量数据是工程决策重要依据。通过对地形、地物、地貌等条件测量分析,能评估工程建设可行性,选最优工程方案。施工建设阶段,水利工程测量为施工提供精确定位与高程控制。施工控制测量建立施工控制网,为施工放样提供基准;施工放样将设计图纸上建筑物位置、尺寸等信息准确放样到实地,指导施工。若测量出现偏差,会导致建筑物位置不准、尺寸不符设计要求,影响工程质量和安全。工程运营维护阶段,水利工程测量用于监测工程安全状况。通过变形监测、水库库容动态监测等,能及时发现工程问题,如建

筑物沉降、位移及水库库容变化等,为工程维护管理提供科学依据,确保工程安全运行。

2 数字化测绘技术概述

2.1 数字化测绘技术的概念

数字化测绘技术是随着计算机技术、信息技术和测 绘技术的发展而兴起的一种新型测绘技术。数字化测绘 技术涵盖了数据采集、数据处理、数据管理和成果输 出等多个环节。在数据采集方面,数字化测绘技术可 以利用中国北斗卫星导航系统(BDS)、全球定位系统 (GPS)、全站仪、无人机、三维激光扫描仪等先进的测 绘仪器, 快速、准确地获取地形、地物、地貌等空间信 息。这些仪器能够实时记录测量数据,并将其传输到计 算机中。数据处理环节则运用专业的测绘软件, 对采集 到的数据进行处理和分析, 如数据滤波、坐标转换、图 形编辑等,生成数字化的地形图、断面图等测绘成果。 数据管理通过数据库技术,对测绘数据进行存储、管理 和查询,方便后续的使用和更新。成果输出可以将数字 化的测绘成果以各种形式输出,如纸质图纸、电子文 档、三维模型等以及各种格式的电子文件,满足不同用 户的需求。

2.2 数字化测绘技术的优势

数字化测绘技术相比传统测绘技术具有诸多优势。 首先,数字化测绘技术提高了测绘效率和精度。传统测 绘技术需要大量的人工操作,测量过程繁琐,效率低 下,且容易受到人为因素的影响,导致测量精度不高。 而数字化测绘技术利用先进的测绘仪器和自动化软件, 能够快速、准确地获取和处理数据,大大缩短了测绘周 期,提高了测量精度。其次,数字化测绘技术实现了测 绘成果的数字化和信息化。数字化测绘成果以电子数据 的形式存在,便于存储、传输和共享。不同部门和人员 可以通过加密网络随时随地获取和使用测绘数据,提高 了工作效率和协同能力。数字化测绘成果可以进行多种 形式的处理和分析,如空间分析、统计分析等,为工程 决策提供更丰富的信息支持。另外,数字化测绘技术具 有较强的适应性和灵活性。它可以适应不同的测绘环境 和任务需求。数字化测绘技术还可以根据工程的不同阶 段和要求,对测绘成果进行动态更新和维护,确保测绘 数据的时效性和准确性。

3 数字化测绘技术在水利工程前期规划测量中的应用

3.1 地形测量

在水利工程前期规划的地形测量中,数字化测绘技 术得到了广泛应用。中国北斗卫星导航系统(BDS), 全球导航卫星系统(GNSS)实时动态(RTK)定位技 术、全站仪,作为一种集水平角、垂直角和斜距测量于 一体的数字化测绘仪器,通过其内置的高精度计算程 序,能够迅速而准确地计算出测点的三维坐标。它凭借 卓越的测量精度、简便的操作流程及广泛的适用性,成 为了地形测量中不可或缺的一部分。在实际操作中,测 量人员会根据测区的具体情况,科学合理地布设等级控 制点,并依托GPS-RTK进行详细的碎部测量,从而精确 获取地形点的坐标及高程数据。无人机航测技术也是地 形测量的重要手段[2]。无人机搭载高分辨率的相机,可以 按照预设的航线进行飞行,对测区进行航空摄影。通过 摄影测量软件对获取的航拍影像进行处理,可以生成数 字正射影像图(DOM)、数字高程模型(DEM)和数字 线划图 (DLG)等测绘成果。无人机航测具有速度快、 成本低、灵活性高等优点,特别适用于大面积、地形复 杂且无视线遮挡的区域。

3.2 水下地形测量

水下地形测量是水利工程前期规划的重要环节,数字化测绘技术为其提供了有效的解决方案。多波束测深系统是一种先进的水下地形测量设备,它可以同时发射多个波束,对水底进行全方位的测量。多波束测深系统能够快速、准确地获取水底的地形数据,生成高精度的水下数字高程模型。通过与中国北斗卫星导航系统(BDS)、全球定位系统(GPS)和姿态传感器等设备的集成,可以实时获取测量船的位置和姿态信息,对测量数据进行精确的校正,提高水下地形测量的精度。侧扫声呐技术也可以用于水下地形测量。侧扫声呐通过向水底发射声波,接收反射回来的声波信号,生成水底的声呐图像。声呐图像可以反映水底的地形地貌、障碍物等信息,为水下地形测量提供直观的资料。结合多波束测深系统和侧扫声呐技术,可以更全面地了解水下地形情况,为水利工程的设计和施工提供准确的水下地形数据。

3.3 地质灾害隐患点探测

水利工程前期规划中,地质灾害隐患探测极为关键和重要,数字化测绘技术作用显著。三维激光扫描技术凭借其高分辨率、高精度的优势,快速获取测区三维数据,识别潜在滑坡、崩塌体及裂隙,为地质灾害评估提供详实数据。探地雷达技术利用电磁波反射特性,探测地下空洞、软弱夹层等隐患,助力选址避让危险区域。结合GIS技术整合分析,构建包含地形、地质结构、灾害隐患的三维可视化模型,全面掌握测区地质状况。这一综合应用为水利工程规划提供科学依据,降低地质灾害风险,确保工程安全与稳定,促进水利工程建设与运营的可持续发展。

4 数字化测绘技术在水利工程施工建设测量中的应用

4.1 施工控制测量

施工控制测量是水利工程施工建设的基础,数字化测绘技术为其提供了高精度的控制网建立方法。中国北斗卫星导航系统(BDS)、全球定位系统(GPS)静态相对定位技术可以用于建立高等级的施工控制网。通过在测区内合理布设GPS控制点,使用GPS接收机进行长时间的数据采集,然后通过数据处理软件进行基线解算、网平差等处理,得到高精度的控制点坐标。GPS静态相对定位技术具有测量精度高、不受通视条件限制等优点,适用于各类水利工程的施工控制测量。对于一些精度要求较高的工程,还可以采用全站仪边角同测的方法进行施工控制网的加密和扩展。全站仪可以同时测量水平角和边长,通过平差计算,提高控制网的精度和可靠性。

4.2 施工放样

施工放样是将设计图纸上的设计位置、尺寸坐标等信息准确地放样到实地,指导施工人员进行施工。数字化测绘技术为施工放样提供了高效、准确的方法。中国北斗卫星导航系统(BDS)、全球导航卫星系统(GNSS)实时动态(RTK)定位技术、全站仪坐标放样是常用的施工放样方法。测量人员将设计坐标输入全站仪,全站仪根据输入的坐标和测站点的坐标,计算出放样点的方向和距离,然后指挥施工人员进行放样^[3]。全站仪坐标放样具有精度高、操作简便等优点,适用于各种水利工程的施工放样。对于一些复杂的建筑物,如大坝、水闸等,还可以采用三维激光扫描技术进行施工放样。三维激光扫描放样可以更直观地展示建筑物的位置和形状,提高施工放样的精度和效率。

4.3 施工过程监测

在水利工程施工过程中,需要对建筑物的变形、应 力等情况进行监测,以确保工程的安全和质量。数字化 测绘技术为施工过程监测提供了有效的手段。中国北斗卫星导航系统(BDS)、全球定位系统(GPS)实时动态差分定位技术(RTK)可以用于建筑物的变形监测。在建筑物上布设监测点,安装GPS接收机,通过与基准站的实时数据传输和处理,可以实时获取监测点的三维坐标变化情况。RTK技术具有实时性强、精度高等优点,能够及时发现建筑物的变形情况,为施工安全提供保障。还可以采用全站仪自动跟踪测量系统进行施工过程监测。通过对监测数据的分析和处理,可以评估建筑物的稳定性和安全性,为施工决策提供依据。

5 数字化测绘技术在水利工程运营维护测量中的应用 5.1 变形监测

水利工程在运营过程中,水利工程可能会受到各种 因素的影响而发生变形,如地基沉降、水压力作用等。 变形监测是确保水利工程安全运行的重要措施。数字 化测绘技术为变形监测提供了高精度、自动化的监测方 法。合成孔径雷达干涉测量(InSAR)技术是一种新型 的变形监测技术,它利用卫星或飞机搭载的合成孔径雷 达,对同一地区进行多次观测,通过分析雷达影像之间 的相位差异,获取地表微小的变形信息。InSAR技术具有 监测范围广、精度高、不受天气影响等优点,适用于大 面积水利工程的变形监测。地面激光扫描技术也可以用 于建筑物的变形监测。地面激光扫描技术可以获取建筑 物的详细变形信息,为工程的安全评估提供准确的数据 支持。

5.2 水库库容动态监测

水库库容作为水库运行管理中的关键参数,对于水库的合理调度、防洪安全、水资源利用等诸多方面都有着至关重要的影响。数字化测绘技术的出现,为水库库容的动态监测提供了高效、精准的解决方案。在实际操作中,首先需要在水库周边合理布设水位监测站。这些监测站如同水库的"眼睛",能够实时、准确地获取水库的水位信息,并将数据及时传输到监控中心。与此同时,利用先进的数字化测绘技术,如无人机航测、三维激光扫描、水下测量等,对水库的地形进行全面、细致的测量,获取高精度的地形数据。基于这些数据,建立起水库的数字高程模型,该模型能够精确地反映水库地形的起伏变化。有了水位信息和数字高程模型,就可以

通过特定的算法实时计算水库的库容。当水位发生变化 时,无论是因降雨、泄洪还是其他因素引起,系统都能 迅速根据新的水位数据和数字高程模型,及时更新水库 库容数据。

5.3 设施设备维护与智慧管理

在水利工程中,设施设备的正常运行是保障整个工 程效益发挥的关键。数字化测绘技术为水利工程设施设 备的维护与智慧管理带来了全新的思路和方法。通过 建立水利工程的三维模型,将各类设施设备的信息,如 设备的位置、型号、规格、安装时间等,全面集成到模 型中。这一过程就像是为水利工程构建了一个数字化的 "虚拟世界",管理人员可以通过这个三维模型直观地 了解设施设备的分布位置、运行状态等详细信息[4]。在进 行设施设备的巡检时,巡检人员可以根据三维模型快速 定位设备位置,提高巡检效率。利用数字化测绘技术对 设施设备的运行数据进行实时监测和分析。通过对这些 数据的分析,可以及时发现设施设备存在的潜在问题, 如部件磨损、运行异常等。管理人员可以根据分析结果 提前制定维护和保养计划,对设备进行及时维修和保 养,从而延长设施设备的使用寿命,降低维修成本,确 保水利工程的安全稳定运行。

结束语

数字化测绘技术在水利工程测量中的应用,极大地提升了测量的效率、精度和信息化水平,贯穿于水利工程前期规划、施工建设及运营维护的全过程。从地形测量到设施设备智慧管理,该技术都发挥着不可替代的作用。未来,随着技术的不断发展,数字化测绘技术将进一步优化和完善,为水利工程的安全、高效建设与运行提供更有力的保障,推动水利工程行业的持续进步。

参考文献

[1]闫志港,李雪莲.现代工程测量技术在水利工程建设中的应用[J].灌溉排水学报,2023,42(06):147.

[2]李高潮,田娜.倾斜摄影测量在水利工程测绘中的应用[J].工程与建设,2023,37(02):491-494.

[3]杜丽雯,温旋,孔德博.大型水利枢纽工程坝型数字化测绘技术与应用[J].水利规划与设计,2023,(02):85-89.

[4]张俊洲.现阶段数字化测绘技术在工程测量中的运用[J].智能城市,2021,7(07):57-58.