光伏多晶硅电耗降低技术路径探索

郑海洪

新疆大全新能源股份有限公司 新疆 石河子 832000

摘 要:光伏多晶硅作为关键半导体材料,其生产电耗是影响行业成本与竞争力的核心因素。当前主流工艺中,改良西门子法因成熟占据主导但能耗较高,硅烷法能耗较低却受安全性制约。生产电耗分布于合成、电解制氢、精馏、还原、尾气回收等环节,受原材料纯度、设备性能、工艺参数等影响显著。通过优化工艺参数、改进设备、开发新型工艺及加强能源管理与回收,可有效降低电耗,提升能源利用效率,推动行业绿色低碳发展。

关键词: 光伏多晶硅; 电耗降低技术; 路径探索

引言

随着光伏产业快速发展,多晶硅需求激增,其生产过程的高电耗问题日益凸显,成为制约行业可持续发展的关键。改良西门子法与硅烷法作为主流工艺,在电耗控制上各有挑战。生产中,各环节电耗相互关联,受多种因素影响,降低电耗对提升企业效益、践行双碳目标意义重大。本文围绕光伏多晶硅电耗降低技术路径展开探索,分析电耗构成与影响因素,从工艺优化、设备改进等方面提出策略,为行业节能降耗提供参考。

1 光伏多晶硅生产工艺概述

多晶硅, 作为单质硅的一种重要形态, 由众多结晶 学方向各异的硅单晶体组合而成。其在常温环境下, 化 学性质颇为稳定, 但一旦处于高温状态, 便会与氧、 氮、硫等物质发生化学反应;在高温熔融状态时,化学 活泼性显著增强,几乎能够与任何材料相互作用。多晶 硅具备半导体特性,是极为关键的优良半导体材料,作 为生产单晶硅的直接原料, 堪称当代人工智能、自动控 制、信息处理、光电转换等半导体器件的电子信息基础 材料,被誉为"微电子大厦的基石"。当下,多晶硅的 生产技术主要包含改良西门子法与硅烷法。改良西门子 法,是在传统西门子法气相沉积生产柱状多晶硅的基础 上,采用闭环式生产工艺发展而来。该工艺首先让工业 硅粉与HCl发生反应,生成SiHCl,。将SiHCl,置于H,气氛 的还原炉中,进行还原沉积,进而得到多晶硅。还原炉 所排出的尾气,诸如H2、SiHCl3、SiCl4、SiH2Cl2和HCl 等,经过一系列分离操作后,可实现循环利用。此方法 工艺成熟, 沉积速率较高, 原料相对安全, 能够兼容太 阳能级与电子级多晶硅的工业化生产,目前在市场中占 据较大份额。不过, 其存在产率低、能耗高、成本高、 资金投入大以及资金回收慢等固有缺点。硅烷法,是把 硅烷通入以多晶硅晶种作为流化颗粒的流化床里, 促使 硅烷裂解,并在晶种上沉积,最终获得颗粒状多晶硅。 硅烷的制备方法多样,常见的有歧化法等。该方法所生 成的多晶硅含硅量较高,分解速度快,分解率高,且分 解温度较低,生成的多晶硅能耗较低,产品纯度也较 高。硅烷不但制造成本高昂,而且具有易燃、易爆的特 性,安全性较差,在一定程度上限制了其在工业生产中 的广泛应用。

2 光伏多晶硅生产电耗构成及影响因素

2.1 电耗构成分析

在光伏多晶硅生产流程中, 电耗分布于多个关键环 节。从起始的原料处理阶段,到核心的反应生成过程, 再到后续的产品提纯与精制, 电力的消耗贯穿始终。在 合成环节,工业硅粉与HCl反应生成SiHCl3时,需要电 能来维持反应所需的特定温度与压力环境,确保反应高 效、稳定地进行。电解制氢过程同样高度依赖电力,水 电解为氢气,而氢气在后续的还原沉积步骤中是不可或 缺的反应物,其制备过程的电耗在整体电耗中占据相当 比例。精馏环节,为实现物质的精准分离,获取高纯度 的反应原料,需要借助电力驱动各类精馏设备,实现不 同组分的有效分离。在还原炉内, SiHCl,在H,气氛下还原 沉积生成多晶硅, 这一过程不仅需要持续的电能来维持 高温环境,以促使化学反应发生,还需要电力来保障还 原炉内的压力控制、气体流量调节等操作的精准性。尾 气回收阶段,通过一系列复杂的分离操作,将尾气中的 H₂、SiHCl₃、SiCl₄等物质进行回收再利用,此过程中的压 缩、冷凝、吸附等设备均需消耗大量电能。氢化环节, 对反应过程中产生的副产物进行处理, 使其转化为可循 环利用的原料,这同样离不开电能的支持。这些环节的 电耗相互关联, 共同构成了光伏多晶硅生产的综合电耗 体系,任何一个环节电耗的变化,都可能对整体电耗产 生显著影响[1]。

2.2 影响电耗的因素

2.2.1 原材料纯度

原材料纯度对光伏多晶硅生产电耗有着至关重要的 影响。以工业硅粉为例,其纯度若较低,杂质含量相对 较高,在与HCl反应生成SiHCl。的过程中,杂质可能会参 与副反应,消耗额外的能量,同时导致反应速率降低, 为了达到预期的反应进度与产量,就不得不延长反应时 间或提高反应条件的严苛程度,这无疑会增加电耗。在 精馏环节, 若原料中杂质过多, 会增加精馏的难度与复 杂性,需要更多的塔板数和更大的回流比,才能实现高 纯度的分离效果,而这将大幅提升精馏过程的电耗。不 纯的原料在后续的还原沉积过程中, 可能会影响多晶硅 的牛长质量与速率, 使得还原炉需要消耗更多的电能来 维持合适的反应环境,以保障多晶硅的正常生成。高纯 度的原材料能够减少副反应的发生,降低反应过程中的 能量损耗, 优化精馏与还原等环节的运行效率, 从而有 效降低整体生产过程中的电耗。确保原材料具备较高的 纯度,是降低光伏多晶硅生产电耗的关键基础。

2.2.2 生产设备性能

生产设备性能在很大程度上决定了光伏多晶硅生产 的电耗水平。先进的合成设备,能够通过优化内部结构 与反应路径,增强对反应条件的精准控制能力,使得工 业硅粉与HCl的反应在更高效的条件下进行,减少不必 要的能量浪费,从而降低合成环节的电耗。在还原炉方 面,采用新型材料与设计的高效还原炉,具有更好的热 传导与隔热性能,能够在维持反应所需高温的同时,减 少热量散失,降低电能的无效消耗。高效还原炉还可能 具备更合理的气体分布与流量调节系统, 有助于提高 SiHCl₅的还原效率,降低还原电耗。对于精馏设备而言, 高性能的精馏塔与先进的分离技术相结合, 能够在更低 的能耗下实现更精准的物质分离,减少因分离不彻底导 致的重复操作所带来的电耗增加。尾气回收设备若具备 更高的回收效率, 能够在消耗较少电能的情况下, 实现 对尾气中各类有用物质的高效回收, 进一步降低整体电 耗。先进的生产设备通过提升反应效率、优化能量利 用、减少能量损失等多方面途径,对降低光伏多晶硅生 产电耗发挥着极为重要的作用。

2.2.3 生产工艺参数

生产工艺参数的合理设置是影响光伏多晶硅生产电耗的关键因素。在反应温度方面,不同的反应阶段存在着最适宜的温度区间。例如,SiHCl₃的合成反应,温度过高可能引发副反应,导致能耗上升,而温度过低则反应速率缓慢,为达到产量要求同样会增加整体能耗。精确

控制反应温度在最佳范围内,能够实现能耗与生产效率的平衡。反应压力也是如此,合适的压力条件有助于促进反应向生成目标产物的方向进行,提高反应转化率,减少能量的无效消耗。气体流量的控制同样重要,在还原沉积过程中,H₂与SiHCl₃的流量比例会直接影响多晶硅的沉积速率与质量。若流量比例不合理,可能导致沉积不均匀、质量下降,进而需要额外的能量来进行后续处理或重新调整工艺,增加电耗。反应时间的控制也不容忽视,过长的反应时间会增加能耗,而过短则影响产品质量与产量,同样会间接导致能耗上升。通过不断优化和精准调控这些生产工艺参数,能够有效降低光伏多晶硅生产过程中的电耗,提升生产的经济性与能源利用效率^[2]。

3 光伏多晶硅电耗降低技术路径

3.1 优化生产工艺参数

(1)针对反应温度,运用先进的温度监测与调控系 统,对不同反应阶段的温度进行精准把控。在SiHCl3合 成反应中, 通过实时收集反应数据, 利用智能算法动 态调整加热或冷却设备的运行功率,确保反应温度稳定 处于最佳区间,避免因温度波动引发的副反应与能耗增 加,实现能耗与生产效率的最优平衡。(2)在反应压力 方面,安装高精度压力传感器,精确测量反应体系内的 压力变化。依据反应动力学原理,结合实际生产数据, 优化压力调节策略。在保证反应向生成目标产物方向高 效进行的同时, 避免过高压力导致的设备损耗与能源浪 费,提高反应转化率,降低能量的无效消耗。(3)对 于气体流量,采用质量流量计和流量调节阀,实现对H。 与SiHCl,等气体流量的精确控制。在还原沉积时,借助 大数据分析与模拟技术,构建气体流量比例与多晶硅沉 积速率、质量的精准模型,依据模型反馈实时调整流量 比例, 保证多晶硅沉积均匀、质量佳, 降低后续处理能 耗。严格控制反应时间,通过自动化控制系统设定合理 时长,避免能耗上升,提升能源利用效率。

3.2 改进生产设备

(1)在合成设备的改进上,深入研究工业硅粉与HCl 反应的机理,优化设备内部的反应腔体结构,设计更合理的物料混合与反应路径。采用新型耐腐蚀、耐高温材料制造设备内壁,减少物料在反应过程中的附着与损耗,提高反应效率。引入智能控制系统,实现对反应温度、压力、流量等参数的精准调节,降低合成环节的电耗。(2)对于还原炉,研发并采用新型高效热传导与隔热材料,优化炉体的热传递性能,减少热量散失到周围环境。改进还原炉的气体分布装置,使H₂与SiHCl₃在炉内更均匀地分布,提高反应的均匀性与SiHCl₃的还原效率。

通过对还原炉的结构与控制算法进行优化,实现对炉内温度场、压力场的精确控制,降低还原电耗,提升多晶硅的生长质量与速率。(3)精馏设备的改进,选用高性能的精馏塔内件,如高效填料与塔板,结合先进的分离技术,如变压精馏、热泵精馏等,能在更低能耗下实现更精准分离,提高分离效率,减少重复操作增加的电耗。对控制系统升级,实现自动化与优化控制以降低能耗。对于尾气回收设备,研发新型高效的吸附剂与分离膜,在消耗较少电能的情况下,实现尾气中有用物质的高效回收,降低整体电耗。

3.3 开发新型生产工艺

(1)探索新型的多晶硅合成工艺,研究采用等离子 体增强化学气相沉积(PECVD)等先进技术,降低反应 温度与压力条件,减少能源消耗。通过对等离子体参数 的精确控制,促进反应的高效进行,提高多晶硅的合成 速率与质量,同时降低合成过程中的电耗。(2)研发新 的氢化工艺,改进对反应副产物的处理方式。例如,采 用催化氢化技术, 在更温和的条件下将副产物转化为可 循环利用的原料,提高原料的利用率,减少因副产物处 理不当导致的能源浪费,降低氢化环节的电耗。(3)结 合绿色化学理念, 开发环境友好型的多晶硅生产工艺。 探索使用无毒、无害的原料与溶剂,减少生产过程中的 污染排放,同时优化工艺路线,降低整体能耗。例如, 研究以水为溶剂的多晶硅生产工艺, 替代传统的有机溶 剂,不仅降低了成本,还减少了能源消耗与环境污染。 积极开展产学研合作,与科研机构、高校共同研发新型 生产工艺, 充分利用各方的技术优势与创新资源, 加速 新型工艺的开发与应用,提升公司在多晶硅生产技术领 域的竞争力[3]。

3.4 加强能源管理和回收利用

(1)建立完善的能源管理系统,安装智能电表、水表、气表等能源计量设备,对生产过程中的能源消耗进行实时监测与数据采集。通过能源管理软件对采集到的

数据进行分析,挖掘能源消耗的规律与潜在问题,为制定节能措施提供数据支持。(2)在能源回收利用方面,对还原炉等设备产生的余热进行回收再利用。采用余热锅炉、热管换热器等设备,将余热转化为蒸汽或热水,用于预热原料、加热工艺水等,提高能源的综合利用率。对尾气回收过程中产生的压力能进行回收,通过膨胀机等设备将压力能转化为电能或机械能,供其他生产环节使用,降低整体电耗。(3)优化生产调度,根据能源价格的波动与生产任务的需求,合理安排生产设备的运行时间与负荷。在能源价格低谷时段,适当增加生产负荷,提高设备的运行效率,降低单位产品的能源消耗成本。加强对员工的能源管理培训,提高员工的节能意识,鼓励员工在日常操作中积极采取节能措施,形成全员参与的能源管理氛围,持续降低光伏多晶硅生产的电耗,提升企业的经济效益与环境效益。

结语

综上所述,降低光伏多晶硅生产电耗是一项系统工程,需从工艺、设备、能源管理等多维度协同发力。通过优化生产参数提升反应效率,改进设备减少能量损耗,开发新型工艺突破传统瓶颈,加强能源回收利用提高综合效益,可显著降低电耗。未来,需持续推动技术创新与产学研融合,强化全流程节能意识,在保障产品质量的同时,实现能耗持续下降,助力产业向高效、绿色方向升级,增强市场竞争力与可持续发展能力。

参考文献

[1]朱徐立,谢连发,黄丹辉,等.光伏多晶硅定向凝固不平衡散热的数值研究与实验[J].宇航材料工艺,2024,54(4): 30-36.

[2]陈敏,陈辉,常欣,等.基于成本和区域优势视角的光 伏多晶硅产业发展格局[J].绿色矿冶,2023,39(1):53-64.

[3]何岩,吴彬林,王敏,等.光伏多晶硅原料国际价格的 形成机制[J].百科知识,2023(36):11-13.