新能源建筑与造价管理模式的创新与实施路径

王风平 韩丽霞

内蒙古蒙能建设工程监理有限责任公司 内蒙古 呼和浩特 010070

摘 要:新能源建筑深度整合可再生能源,具有能源系统集成化、技术复杂度高、前期投入大但长期经济效益与环境效益显著等特点。传统造价管理模式存在造价构成考量不全面、管理阶段不连贯、技术协同考虑不足等局限。为此,需创新造价管理模式,包括全生命周期、数字化及协同造价管理模式,并从完善全生命周期造价管理流程、构建数字化造价管理平台、建立协同造价管理机制三方面实施创新,以提升造价管理科学性与全面性,推动新能源建筑发展。

关键词: 新能源建筑; 造价管理; 模式创新; 实施路径

引言:在建筑行业迈向绿色可持续发展的进程中,新能源建筑凭借深度整合可再生能源,实现能源高效利用与低碳排放,成为现代建筑前沿发展方向。其能源系统高度集成、技术复杂多样,经济与环境效益显著,但也带来造价管理新挑战。传统造价管理模式因造价构成考量不全面、管理阶段不连贯、技术协同考虑不足,难以适应新能源建筑发展需求。在此背景下,探索创新造价管理模式迫在眉睫。全生命周期造价管理模式全面系统,数字化造价管理模式顺应信息化潮流,协同造价管理模式强调多方协作,它们为新能源建筑造价管理提供了新思路。本文将深入剖析其内涵、局限、创新方向及实施路径,为行业发展提供参考。

1 新能源建筑的内涵与特点

新能源建筑作为现代建筑领域的前沿发展方向,是 指在建筑的规划、设计、建设以及后续运营管理的全生 命周期中,深度整合并充分利用太阳能、风能、生物 质能、地热能等可再生新能源, 达成能源的高效利用与 低碳排放目标的建筑形态。其核心本质在于推动新能源 技术与建筑系统的深度有机融合,以此逐步摆脱对传统 化石能源的过度依赖, 从根本上降低建筑的能源消耗总 量,并显著减轻对生态环境的负面影响。新能源建筑具 备一系列显著特点。在能源系统层面,呈现出高度集成 化特征,将新能源发电、储能以及能源转换等子系统与 建筑的结构体系、给排水系统、暖通空调系统等紧密结 合,构建起一体化的能源供应网络,实现能源的优化配 置与高效利用。从技术维度看,其复杂度极高,涵盖了 新能源发电技术,如高效光伏组件、先进风力发电机 等;储能技术,像高性能蓄电池、飞轮储能装置等;以 及智能控制系统等众多领域。并且,各技术之间需要实 现无缝协同与精准配合,以确保整个能源系统的稳定运 行。在经济层面,新能源建筑前期投入相对较大,新能源设备和系统的购置与安装成本较高,使得初始造价高于传统建筑。然而,从全生命周期视角审视,其在运营阶段可通过能源自给自足或大幅减少外购能源费用,实现成本的有效节约,长期经济效益十分显著。同时,新能源建筑的环境效益极为突出,通过大规模利用可再生能源,切实减少了二氧化碳等温室气体的排放,有力保护了生态环境[1]。

2 传统造价管理模式在新能源建筑中的局限性

2.1 造价构成考虑不全面

在传统造价管理模式下,对新能源建筑造价构成的 考量存在明显短板。其关注重心主要聚焦于建筑施工阶 段的工程费用,涵盖材料费、人工费、机械费等常规 项目,却对新能源建筑特有的成本构成要素缺乏足够重 视。新能源建筑造价构成更为复杂,除传统建筑费用 外,还包括新能源设备,如光伏板、风机的购置费用, 系统集成费用以及智能控制设备费用等。传统模式不仅 常忽视这些新增成本项目,对其估算也缺乏精准度,致 使造价预算与实际成本出现较大偏差。而且,传统模式 较少考虑新能源建筑运营阶段的能源节约收益、设备维 护成本等全生命周期成本,无法全面、客观地反映新能 源建筑的真实经济性。

2.2 造价管理阶段不连贯

传统造价管理模式在新能源建筑项目中,呈现出造价管理阶段不连贯的显著弊端。其在项目决策、设计、施工、运营等各阶段的造价管理工作相对孤立,彼此间缺乏有效的衔接机制与信息共享渠道。在新能源建筑领域,前期决策和设计阶段对于新能源技术的选型、系统的合理布局等起着关键作用,会直接对后续造价及运营成本产生影响。一旦各阶段造价管理脱节,便会引发一

系列问题。比如,设计阶段若未充分考量新能源系统与 建筑结构的兼容性,施工阶段就可能需额外投入改造费 用;运营阶段若发现新能源设备运行效率低下,也因各 阶段割裂,难以追溯到设计或施工阶段的问题根源^[2]。

2.3 技术协同考虑不足

在新能源建筑领域,传统造价管理模式在技术协同 考量方面存在明显缺陷。新能源建筑需综合运用多种新 能源技术与建筑技术,不同技术的选择与组合对造价有 着重大影响。然而,传统模式缺乏对技术协同性的深入 思考,多孤立地核算各项技术成本,忽略了技术间的相 互作用及整体效益。比如,光伏组件与建筑幕墙结合方 式多样,这不仅关乎建筑外观与发电效率,还会造成造 价差异。但传统模式可能只聚焦光伏组件购置成本,未 考虑不同安装方式对幕墙施工成本的影响。同时,传统 模式对新能源技术更新换代速度预估不足,无法精准估 算技术升级引发的造价变动,难以适应新能源建筑快速 发展的需求。

3 新能源建筑造价管理模式的创新方向

3.1 全生命周期造价管理模式

全生命周期造价管理模式是一种全面且系统的造价 管理策略, 它将新能源建筑从项目决策起始, 历经设 计、施工、运营, 直至最终拆除的完整生命周期, 均纳 入造价管理的范畴。该模式着重对各阶段的成本与收益 进行综合、细致的考量。(1)在决策阶段,需针对不同 的新能源技术方案展开深入分析,全面评估其全生命周 期成本。此成本涵盖初始投资,如新能源设备的购置与 安装费用;运营费用,包含日常能源消耗、设备运行维 护等开支;维护费用,用于保障设备长期稳定运行的各 类维修保养支出; 以及残值, 即建筑拆除时新能源设备 可回收的价值等。通过综合比对, 选取经济性最优的方 案。(2)设计阶段,致力于优化新能源系统与建筑的集 成设计,在确保建筑性能满足要求的前提下,尽可能降 低全生命周期成本。施工阶段,则要严格把控新能源设 备安装、系统调试等关键环节的费用, 保证施工成本严 格控制在预算范围内。运营阶段,持续监测新能源系统 的运行成本和能源节约所带来的收益,依据实际情况及 时调整运营策略,提升项目的经济性。拆除阶段,需充 分考虑新能源设备的回收利用成本以及环境处理成本。 全生命周期造价管理模式能够更为全面、客观地反映新 能源建筑的经济性, 为项目的科学决策提供坚实有力的 依据。

3.2 数字化造价管理模式

数字化造价管理模式是顺应时代发展潮流, 依托BIM

(建筑信息模型)、大数据、人工智能等一系列前沿数 字化技术,推动新能源建筑造价管理朝着信息化与智能 化方向迈进的新型管理模式。在该模式下,通过构建包 含新能源设备详细参数、各类材料实时价格、具体施工 工艺以及精准成本信息等的BIM模型,成功实现了造价 信息与建筑模型的有机关联。如此一来,在设计阶段, 工作人员便能借助该模型开展可视化的造价分析与优化 工作,提前发现潜在的造价问题并进行调整。利用大数 据技术, 能够广泛收集和分析新能源建筑的历史造价数 据、市场价格的动态波动数据以及技术发展的前沿数据 等。通过对这些海量数据的深度挖掘和分析,可显著提 高造价估算的精准度,为项目决策提供更可靠的依据。 借助先进的人工智能算法,能够对新能源系统的成本风 险进行科学预测,及时为造价控制发出预警信号,以便 采取有效的应对措施。数字化造价管理模式还具备强大 的信息整合与协同能力, 能够打破新能源建筑各阶段造 价管理之间的信息壁垒, 实现信息的实时共享和各参与 方的协同工作,进而全面提升造价管理的效率和精度, 推动新能源建筑造价管理水平的提升。

3.3 协同造价管理模式

协同造价管理模式是一种聚焦于新能源建筑项目, 强调项目参与各方紧密协作、共同推进造价管理工作的 创新模式。参与方涵盖建设单位、设计单位、施工单 位、新能源设备供应商以及造价咨询机构等,各方在项 目中扮演着不同但相互关联的角色。(1)在项目前期, 各方基于自身的专业知识和经验, 共同参与到新能源技 术方案的论证与造价估算工作中。建设单位从项目整体 目标和投资角度提出要求,设计单位运用专业技术对方 案进行可行性分析, 施工单位结合施工经验评估施工难 度与成本,新能源设备供应商提供设备性能与价格信 息, 造价咨询机构则运用专业方法进行造价估算, 各方 共同提出优化建议,确保方案既满足技术要求又具有经 济合理性。(2)设计阶段,设计单位与新能源设备供应 商紧密协同,保证设计方案与设备性能精准匹配,避免 因技术不兼容引发后续设计变更和成本增加。(3)施工 阶段,施工单位与供应商密切沟通配合,及时解决设备 安装过程中出现的技术、质量等问题, 有效控制施工成 本。通过这种全方位的协同合作,能够充分整合各方资 源,最大程度减少信息不对称和利益冲突,实现新能源 建筑造价的科学、有效控制[3]。

4 新能源建筑造价管理模式创新的实施路径

4.1 完善全生命周期造价管理流程

为提升新能源建筑造价管理的科学性与全面性,需

构建全生命周期成本评估指标体系,清晰界定各阶段成本构成及计算方式,运用净现值法、内部收益率法等经济评价方法,对不同新能源技术方案进行细致对比分析,选出最优方案。(2)设计阶段积极推行价值工程,在确保新能源建筑功能需求得以满足的基础上,优化设计方案以降低成本。如合理规划光伏组件布置,提升发电效率,同时减少建筑材料使用。(3)施工阶段强化成本动态控制,定期对比实际成本与预算成本,精准找出偏差并及时采取纠偏措施,保障成本在可控范围内。(4)运营阶段建立成本监测与反馈机制,详细记录能源消耗、设备维护等费用,为后续项目积累数据。(5)拆除阶段制定科学拆除计划,充分考虑新能源设备回收价值与环保处理成本,实现全生命周期成本最小化。

完善全生命周期造价管理流程。(1)在项目决策阶段,

4.2 构建数字化造价管理平台

为提升新能源建筑造价管理水平, 需搭建基于BIM的 数字化造价管理平台, 达成造价信息的集成化、高效化 管理。该平台需构建模型库、数据库、知识库等核心模 块。模型库负责存储新能源建筑的BIM模型,为造价分析 提供直观的建筑信息载体;数据库广泛收录材料价格、 设备参数、造价指标等关键数据,确保数据的全面性与 准确性;知识库则提供造价管理的规范、标准以及实际 案例等信息,为造价工作提供经验参考。借助该平台, 可实现各参与方的协同工作,设计单位、施工单位、造 价咨询机构等能在平台上便捷共享信息、开展在线协作 与沟通, 打破信息壁垒。同时, 利用平台强大的分析功 能,对造价数据进行多维度剖析,如对比不同新能源技 术的成本、分析各阶段成本占比等,为科学造价决策提 供有力支撑。此外,平台还应设置数据接口,与新能源 监控系统、财务系统等无缝对接,实现数据的自动采集 与共享。

4.3 建立协同造价管理机制

为保障新能源建筑项目造价管理工作高效推进,需 建立一套完善的协同造价管理机制。首先,组建新能源 建筑项目造价管理协同工作小组,成员由建设单位、设 计单位、施工单位、新能源设备供应商及造价咨询机构等各参与方代表构成,全面统筹协调造价管理工作。制定严谨的协同工作制度,清晰界定各方的职责、权利与义务,规范沟通流程与信息共享方式,确保信息传递及时、准确、畅通。在项目实施阶段,定期组织召开协同工作会议,聚焦造价管理中的实际问题,共同探讨解决方案。如面对新能源设备价格波动,协同分析原因并制定应对策略。构建利益共享与风险共担机制,对于因协同优化实现成本节约的,按约定比例在参与方间合理分配;对于因不可预见因素造成的成本增加,依据责任划分共同承担风险,以此充分调动各方参与造价管理的积极性与主动性[4]。

结束语

新能源建筑作为建筑领域的发展新方向,对造价管理提出了全新挑战。传统造价管理模式在新能源建筑中暴露出诸多局限性,难以适应其发展需求。而全生命周期、数字化、协同这三种创新造价管理模式,从不同维度为新能源建筑造价管理提供了新思路与新方法。通过完善全生命周期造价管理流程、构建数字化造价管理平台、建立协同造价管理机制等实施路径,能够有效整合资源、提升管理效率、降低成本偏差。未来,随着新能源建筑技术的不断进步,造价管理模式也需持续优化创新,以更好地推动新能源建筑行业的健康、可持续发展,实现经济效益与环境效益的双赢。

参考文献

- [1]赖冬敏,蒋艳红.绿色施工理念下的建筑工程管理模式创新路径[J].电脑爱好者(普及版)(电子刊),2022(7): 1931-1932.
- [2]李瑞显.绿色施工理念下的建筑工程管理模式创新探讨[J].商品与质量,2022(5):1-3.
- [3]孙振辉.装配式混凝土建筑管理模式创新的思考与探索[J].中国水泥,2024,(11):100-102.
- [4]杨云飞.总承包模式下装配式建筑施工质量管理策略创新研究[J].中国建筑金属结构,2024,23(10):163-165.