水利安全施工管理中的隐患排查与治理机制

冯 磊 王富强 内蒙古绰勒水利水电有限责任公司 内蒙古 呼和浩特 010010

摘 要:水利工程施工安全关乎人民生命财产与社会稳定,隐患排查与治理是保障水利施工安全的核心环节。本文基于水利行业事故隐患排查治理的实践与理论,深入剖析水利安全施工管理中隐患排查与治理机制的现状、问题及优化路径,提出构建动态化、标准化、智能化的隐患排查治理体系,为提升水利施工安全管理水平提供理论支撑与实践指导。

关键词:水利施工安全; 隐患排查; 治理机制; 风险管控; 智能化管理

引言

水利工程建设作为国家基础设施建设的核心领域, 其施工安全直接关系到人民群众生命财产安全与社会稳 定。然而,受自然环境复杂、施工周期长、技术要求高 等因素制约,水利施工安全风险长期存在。据统计,我 国水利行业每年因施工事故造成的直接经济损失超百亿 元,其中因隐患排查不彻底、治理不及时引发的事故占 比达60%以上。例如,西宁市某边坡支护工程因未针对复 杂地质条件采取防护措施,导致坍塌事故造成3人死亡; 安徽省合肥市某排水工程因沟槽开挖未按比例放坡,引 发坍塌事故致4人死亡。这些案例暴露出隐患排查治理机 制在水利施工中的关键作用尚未得到充分重视。

1 水利施工隐患排查治理机制的理论基础

1.1 隐患排查治理的双重预防逻辑

隐患排查治理机制是水利施工安全管理的核心防 线, 其遵循"风险管控一隐患治理一事故预防"的闭环 管理逻辑,体现了从风险识别到事故阻断的完整链条。 根据风险管控理论, 水利施工安全风险可系统划分为物 的不安全状态、人的不安全行为和管理缺陷三类。物的 不安全状态涵盖施工设备老化、材料质量缺陷、地质条 件突变等; 人的不安全行为包括违规操作、安全意识淡 薄、应急能力不足等;管理缺陷则涉及制度漏洞、责任 不清、监督失效等。隐患排查需通过系统性检查,综合 运用现场观察、设备检测、数据分析等手段,精准识别 风险点,并基于风险矩阵模型评估其转化为事故的可能 性与严重性。例如,廉江市水利行业"隐患排查治理 年"行动方案中,通过构建"风险源清单一隐患排查 表一治理台账"三级管理体系,将风险管控细化至每个 施工环节,强调"从源头治起、从细处抓起、从短板补 起"的原则,通过动态排查、分级管控实现风险前置化 解,有效降低了事故发生的概率[1]。

1.2 制度化与标准化建设要求

制度化与标准化是隐患排查治理机制运行的基石。 水利部《水利工程生产安全重大事故隐患判定标准(试 行)》及地方实施细则,为隐患排查提供了明确的技术 依据和操作规范。制度化建设要求水利生产经营单位明 确各级责任主体,从项目法人到一线作业人员,层层签 订安全生产责任书,确保责任到人;同时,制定详细的 排查清单,涵盖施工全过程的各类风险点,并配套制定 治理方案及台账管理制度, 实现隐患排查治理的痕迹化 管理。例如,宁夏水利厅推行的"六项机制"中,隐患 排查治理被细化为制度建设、风险研判、预警发布、防 范处置、责任压实等环节,形成全链条管理体系[2]。其 中,制度建设明确排查周期、内容、方法及责任人;风 险研判通过定期召开安全分析会, 动态评估风险等级; 预警发布利用信息化平台实时推送风险信息; 防范处置 制定针对性应急预案;责任压实则通过考核问责机制确 保各项措施落地见效。

1.3 智能化技术赋能趋势

随着物联网、大数据、人工智能等技术的快速发展,隐患排查治理正从传统的人工巡查向智能化监测转型。智能化技术的应用,不仅提升了隐患排查的效率和精准性,还实现了风险的实时预警和动态管控。例如,田东县水利局通过构建山洪灾害监测预警平台,整合气象、水文、地质等多源数据,利用大数据分析技术建立风险预测模型,实现风险预警信息的实时推送和精准定位。当监测数据超过阈值时,系统自动触发预警机制,通过短信、APP、广播等多种渠道向相关人员发送预警信息,显著提升了隐患响应速度。此外,智能化技术还能通过数据建模预测隐患发展趋势,为治理决策提供科学依据。例如,利用机器学习算法对历史事故数据进行分析,挖掘隐患演变的规律,提前制定防范措施,有效阻

断事故链条。

2 水利施工隐患排查治理机制的现状分析

2.1 制度框架逐步完善,但执行效能不足

自水利部2017年发布《关于进一步加强水利生产安全事故隐患排查治理工作的意见》以来,各级水行政主管部门积极响应,陆续出台了一系列配套制度,明确了排查主体、内容、周期及治理要求,形成了较为完善的制度框架^[3]。然而,实践调研显示,部分单位存在"制度上墙、执行走样"的现象,制度落实不到位成为制约隐患排查治理效能的关键因素。例如,某中型水库运行管理单位虽制定了详细的隐患排查制度,但未建立专项资金保障机制,导致治理资金长期拖欠,隐患无法及时消除;某水利施工企业为应付检查,将隐患排查台账交由安全员"代笔",数据真实性存疑,无法反映实际风险状况。这些问题的存在,暴露出部分单位在制度执行层面存在责任意识淡薄、监督机制缺失等问题,亟需通过强化考核问责、完善监督机制等措施加以解决。

2.2 排查手段多元化,但精准性待提升

当前,水利施工隐患排查主要采用日常巡查、专项检查、季节性检查及专家会诊等多种方式,形成了多元化的排查手段。例如,廉江市在水利工程建设中,以高边坡、深基坑、隧洞等危险性较大工程为重点,组织参建单位开展联合排查,通过现场检查、资料核查、人员访谈等方式,全面识别风险点。然而,传统排查手段依赖人工经验,易受主观因素影响,导致排查结果存在偏差。例如,某水电站溢洪道隐患排查中,因检查人员未使用超声波探伤仪等先进设备,未能发现混凝土内部裂缝,最终导致泄洪时结构破坏,造成严重经济损失。此外,部分单位在排查过程中存在"重形式、轻内容"的现象,排查记录不详细、问题描述模糊,无法为后续治理提供有效依据。因此,提升排查手段的精准性,成为当前隐患排查治理工作的重点。

2.3 治理措施多样化,但闭环管理缺失

水利施工隐患治理通常包括立即整改、限期整改、 停工整顿等措施,旨在通过针对性治理消除风险点。例如,安徽省合肥市排水工程坍塌事故后,当地水行政 主管部门迅速响应,责令涉事企业停工整改,并处以罚款,有效遏制了事故蔓延。然而,部分单位在治理过程 中存在"重整改、轻验收"的现象,治理措施落实不到 位,闭环管理缺失。例如,某水利施工企业完成基坑支 护隐患治理后,未组织专家复核即恢复施工,导致二次 坍塌风险未彻底消除;某水库除险加固工程中,治理方 案未经充分论证即实施,治理效果不佳,仍存在安全隐 患。这些问题暴露出部分单位在治理过程中缺乏系统思维,未构建"排查一评估一治理一验收一销号"的全链条管理机制,导致隐患治理不彻底、风险反弹。

3 水利施工隐患排查治理机制的优化路径

3.1 构建"三位一体"制度体系

以"主体责任一监管责任一社会监督"为核心,构 建完善的隐患排查治理制度框架,是提升水利施工安全 水平的关键。一是强化生产经营单位主体责任。要求生 产经营单位将隐患排查治理经费纳入安全生产措施费, 确保有足够的资金用于隐患的排查和治理。同时,建立 "一隐患一档案"管理制度,对每一个隐患进行详细记 录,包括隐患的发现时间、地点、性质、治理措施、治 理责任人、治理进度等信息,以便跟踪管理和统计分 析。例如,廉江市规定水利工程建设项目法人需在合同 中明确参建单位隐患排查责任,并定期开展联合考核。 通过这种方式,促使各参建单位切实履行隐患排查治理 职责,形成工作合力。二是压实水行政主管部门监管责 任。推行"双随机、一公开"检查机制,即随机抽取检 查对象、随机选派执法检查人员,及时公开检查结果。 这种检查方式能够提高监管的公正性和透明度, 避免人 为因素的干扰。对重大隐患实行挂牌督办,明确督办单 位、督办责任人和督办期限,确保重大隐患得到及时有 效的治理。三是引入社会监督力量。通过设立举报奖励 基金、公开隐患信息等方式,鼓励公众参与治理。公众 作为水利施工的间接利益相关者,对施工现场的安全状 况有一定的关注度。设立举报奖励基金,对举报属实的 公众给予一定的物质奖励, 能够激发公众参与监督的积 极性。公开隐患信息,让公众了解施工现场存在的安全 隐患和治理情况,形成社会舆论压力,促使生产经营单 位和水行政主管部门更加重视隐患排查治理工作。

3.2 创新"智能+专业"排查模式

融合物联网、大数据等技术,提升隐患排查精准性,是适应现代水利施工发展的必然要求。一是推广智能监测设备。在深基坑、高边坡等关键部位安装位移传感器、应力监测仪等设备,实时监测这些部位的位移、应力等参数变化。一旦参数超过预设的安全阈值,系统立即发出警报,提醒相关人员及时采取措施。通过智能监测设备的应用,能够实现对隐患的实时预警,提高隐患发现的及时性。二是建立专家库动态管理机制。要求水利施工企业每年至少聘请2名省级以上专家开展隐患会诊。专家具有丰富的专业知识和实践经验,能够对施工现场的隐患进行准确诊断和评估,并提出科学合理的治理建议。通过建立专家库动态管理机制,根据专家的专

业能力、工作业绩等进行定期评估和调整,确保专家库的质量和活力。三是开发隐患排查APP。实现排查数据云端存储、分析。排查人员通过手机APP可以实时记录隐患信息,并上传至云端服务器。云端服务器对排查数据进行汇总和分析,生成各种统计报表和分析图表,为管理人员提供决策依据。例如,宁夏水利厅"水利安全通"系统已覆盖全区80%的水利工程,排查效率提升40%。该系统实现了隐患排查的信息化、智能化管理,提高了排查工作的效率和准确性。

3.3 实施"全生命周期"治理闭环

从隐患识别到治理验收,构建"排查一评估一治 理一验收一销号"全链条管理机制,确保隐患得到彻底 治理。一是制定隐患分级标准。将重大隐患定义为"可 能导致群死群伤或重大经济损失的风险点",并要求生 产经营单位主要负责人直接负责治理。通过明确重大隐 患的定义和治理责任,提高对重大隐患的重视程度,确 保重大隐患得到优先治理。二是建立治理方案联合审查 制度。例如水库大坝隐患治理方案需经设计单位、监理 单位、水行政主管部门三方会签。三方会签能够充分发 挥各方的专业优势,对治理方案进行全面审查,确保治 理方案的科学性、合理性和可行性。三是强化治理验收 环节。要求验收报告需包含治理前后对比照片、监测数 据及专家意见。治理前后对比照片能够直观地展示治理 效果; 监测数据能够客观地反映隐患治理后的安全状 况;专家意见能够为验收提供专业的技术支持。例如, 田东县江南水库除险加固工程验收时,需提交3年期的沉 降观测记录。通过长期的沉降观测,能够全面了解水库 大坝的稳定性,确保除险加固工程的质量[4]。

3.4 强化"文化+能力"双轮驱动

通过安全文化培育与专业能力提升,夯实隐患排查治理基础,营造良好的安全生产氛围。一是开展"安全文化进工地"活动。在施工现场设置安全警示长廊,通过图片、文字、案例等形式展示安全事故的危害和安全知识,增强从业人员的安全意识。组织家属安全寄语视

频展播,让从业人员感受到家人的关爱和期望,从而更加自觉地遵守安全规定。通过这些活动,营造浓厚的安全文化氛围,使安全理念深入人心。二是实施分级培训计划。要求水利施工企业主要负责人每年接受不少于16学时的安全培训,使其掌握安全生产法律法规、管理知识和技能,提高安全管理水平。一线作业人员每季度参加1次实操演练,通过实际操作,熟悉安全操作规程,提高应急处置能力。通过分级培训,提高不同层次人员的安全素质。三是建立隐患排查治理考核机制。将考核结果与单位资质升级、个人职称评定挂钩。例如,某省水利厅将隐患排查治理纳入企业信用评价体系,对连续两年排名末位的企业暂停投标资格。通过建立考核机制,激励生产经营单位和个人积极履行隐患排查治理职责,形成良好的工作激励机制。

结束语

水利施工隐患排查治理机制是保障施工安全的核心防线,其优化需兼顾制度刚性、技术先进性与文化软实力。未来研究可进一步探索以下方向:一是深化隐患排查治理与BIM、数字孪生等技术的融合,实现风险动态模拟与预警;二是研究跨区域、跨部门协同治理机制,破解大型水利工程隐患排查中的"条块分割"难题;三是构建基于区块链的隐患信息共享平台,提升治理透明度与公信力。通过持续创新,水利施工隐患排查治理机制将向更加科学化、精细化、智能化方向发展,为水利行业高质量发展提供坚实安全保障。

参考文献

[1]陈立,张伟,陈爱鑫,韩朝胜.新型围堰技术在水利工程施工中的应用研究[J].技术与市场,2019,26(12):172+174.

[2]高伟.水利工程施工中沉降测量误差形成原因及控制对策[J].绿色环保建材,2019(12):229-230.

[3]中国水利工程协会.水利工程建设安全生产管理 [M].中国水利水电出版社:202202:221.

[4]王晓莉.水利施工管理中存在的安全风险及改进措施探讨[J].建筑工程技术与设计,2018(10):2713