建筑施工管理对于信息技术的运用分析

许作铭

武汉建工集团股份有限公司 湖北 武汉 430000

摘 要:建筑施工管理中运用信息技术意义重大,可提高管理效率、保障工程质量、降低成本、强化安全管理。但存在技术应用深度不足、专业人才匮乏、数据共享与管理不畅等问题。信息技术在进度、质量、安全管理中深度运用,可实现全方位动态管控。保障其有效运用需深化技术融合,推动在核心管理环节的应用;加强专业人才培养,高校调整课程、企业完善培训;构建数据共享与管理平台,整合资源、统一标准,实现实时共享与协同管理,提升建筑施工管理信息化水平。

关键词:建筑施工管理;信息技术;运用分析

引言:在科技飞速发展的当下,信息技术已深度渗透至各个行业领域,建筑施工管理亦不例外。建筑施工管理涵盖进度、质量、安全、成本等多方面,传统管理模式存在效率低、质量把控难、安全隐患多、成本超支等问题。而信息技术的运用,如BIM、物联网、大数据等,为解决这些问题提供了新途径。它不仅能实现信息的实时传递与共享,提高管理效率,还能对施工全过程进行精准管控,保障工程质量、降低成本、强化安全管理。然而,当前信息技术在建筑施工管理中的应用尚存诸多问题。基于此,深入探讨其重要意义、应用现状、具体运用及保障措施,对推动建筑施工管理信息化、智能化发展具有重要的现实意义。

1 建筑施工管理中运用信息技术的重要意义

建筑施工管理中运用信息技术具有多方面的重要意 义。(1)显著提高管理效率。传统施工管理中,信息传 递多通过会议、文件等方式,流程繁琐且易出现信息失 真。信息技术的应用可实现信息的实时传递与共享,管 理人员通过管理平台能快速获取施工进度、资源调配、 质量安全等信息,及时做出决策,减少沟通成本和时间 成本,提高管理效率。(2)有效保障工程质量。信息 技术可对施工全过程进行质量管控,通过建立质量数据 库,记录材料检验、工序验收等数据,实现质量追溯。 利用可视化技术如BIM(建筑信息模型)对施工工艺进 行模拟,提前发现质量隐患并优化方案;通过传感器等 设备实时监测施工质量参数,及时预警并整改,确保工 程质量符合标准。(3)有助于降低工程成本。信息技术 能实现对施工成本的精细化管理,通过成本管理软件对 人工、材料、机械等费用进行实时统计与分析,对比预 算与实际支出,及时发现成本偏差并采取调整措施。利 用大数据分析技术优化资源调配,减少资源浪费,提高 资源利用效率,从而降低工程总成本。(4)强化安全管理。建筑施工环境复杂,安全风险高,信息技术可通过视频监控、物联网设备等实时监测施工现场的人员状态、设备运行及环境变化,对违规操作、危险区域进入等情况及时预警,同时建立安全隐患排查与整改闭环管理系统,降低安全事故发生的概率^[1]。

2 建筑施工管理中信息技术应用存在的问题

2.1 技术应用深度不足

当前,建筑施工管理中信息技术的应用存在深度不足的问题。部分企业对信息技术的应用仍停留在基础层面,如仅使用简单的办公软件进行文档处理、用财务软件进行成本核算等,未能将信息技术与施工管理的核心环节(如进度控制、质量管控、安全管理)深度融合。例如,虽然部分项目引入了BIM技术,但多应用于模型构建和碰撞检测,在施工模拟、进度跟踪、成本关联等深层次应用上较为欠缺;物联网技术的应用也多局限于设备定位和人员考勤,未实现对施工参数、环境数据的实时分析与智能调控。技术应用的表面化导致其优势难以充分发挥,无法真正提升管理水平。

2.2 专业人才匮乏

在建筑施工管理领域,信息技术的有效运用高度依赖既精通施工管理专业知识,又熟练掌握信息技术的复合型人才。然而,当前行业内此类人才极度匮乏。现有的管理人员大多长期浸淫于传统管理模式,对信息技术的认知和操作能力极为有限,面对管理软件、BIM平台、物联网系统等先进工具时,往往难以有效运用,无法充分发挥其提升管理效率与质量的优势。从人才培养源头来看,高校在建筑工程专业课程设置上存在明显不足,对信息技术的融入不够深入和全面,导致毕业生缺乏运用信息技术解决施工管理实际问题的相关技能。而企业

方面,对员工的信息技术培训投入不足,缺乏系统、科学的培训体系,使得管理人员难以紧跟信息技术快速发展的步伐,进一步加剧了人才匮乏的局面,严重制约了信息技术在建筑施工管理中的广泛推广和深度应用。

2.3 数据共享与管理不畅

建筑施工过程复杂,涵盖建设、施工、监理、设计等多个参与方。在此过程中,会产生规模庞大且种类繁多的数据,像施工图纸详细规划工程结构,进度报告实时反映工程进展,质量检测数据精准把控工程质量,安全记录全面记录施工安全状况等。但目前各参与方间的数据共享机制存在明显短板,数据格式缺乏统一规范,使得数据难以在不同主体间顺畅流通,形成一个个独立的数据区域,导致信息传递受阻,还出现重复录入数据的低效情况。同时,数据管理方面问题突出,数据存储较为分散,缺乏集中管理,查找和调用不便;数据安全性保障不足,易面临泄露和损坏风险。并且,对数据的分析与利用不够充分,大量有价值的数据未能得到有效整合与深度剖析,无法从中提炼出对管理决策有重要参考价值的信息,严重影响了信息技术在施工管理中的应用成效^[2]。

3 建筑施工管理中信息技术的具体运用

3.1 在施工进度管理中的运用

在施工进度管理领域,信息技术的深度运用能够 实现进度的全方位动态管控与精准优化。(1)借助 Project、Primavera等专业的进度管理软件, 依据科学合 理的施工方案精心编制详细的进度计划。该计划精确界 定每一道工序的开始时间、完成时间以及工序之间的逻 辑关联,随后将计划数据完整录入软件,生成直观清晰 的甘特图或网络图,以可视化方式全面展示进度安排, 为后续管理提供清晰指引。(2)通过将BIM技术与进度 管理软件有机融合,构建起4D(3D模型+时间)进度模 型。此模型巧妙地把施工进度与BIM模型紧密关联,实现 进度信息的三维可视化呈现。管理人员可实时对比计划 进度与实际进度,一旦发现偏差,能借助模型迅速直观 地剖析偏差产生的原因,并及时对计划进行合理调整。 例如,在某大型建设项目中,通过4D模型精准察觉到某 一区域的管线安装进度滞后,随即迅速调配充足的人员 和机械设备,保障后续工序得以顺利推进。(3)利用物 联网技术全面采集施工现场的设备运行状态数据、人员 出勤信息等,实时更新进度数据。管理人员通过移动终 端即可随时随地杳看进度动态,实现对施工进度的远程 高效监控与科学管理。

3.2 在施工质量控制中的运用

在施工质量控制环节,信息技术的有效运用可达成 质量的全流程追溯与精细化管控。(1)构建完善的质量 管理信息系统是关键举措,将材料进场检验的各项指标 数据、工序验收的详细记录以及试验检测的精准结果等 全面录入系统,形成系统完备的电子档案。这不仅极大 地方便了质量追溯和随时查阅,还能借助系统的智能分 析功能, 自动预警不合格项。例如, 当材料抽检结果不 符合标准时,系统会立即发出提醒,促使相关人员迅速 停止使用该材料,并按照规定进行退场处理,从源头上 杜绝质量隐患。(2)BIM技术在质量控制方面发挥着独 特作用。其可视化交底功能,让技术人员能够借助BIM模 型,以三维立体的方式向施工班组清晰传达质量要求和 施工要点,有效避免因理解偏差导致的质量问题。对于 钢结构安装、模板支护等复杂工序,通过施工模拟提前 预演,精准发现可能影响质量的潜在问题,并及时优化 施工工艺。(3)利用无人机巡检和视频监控技术对施工 现场进行全方位质量巡查,特别是对高大模板、深基坑 等隐蔽工程,通过高清影像详细记录施工过程,一旦发 现表面缺陷或违规操作,能及时反馈并督促整改,全方 位保障施工质量[3]。

3.3 在施工安全管理中的运用

在施工安全管理领域,信息技术的深度运用显著提 升了安全管理的智能化水平与预警效能。(1)在施工现 场科学布置视频监控系统以及各类智能传感器,像红外 传感器、振动传感器等,能够全方位、实时地监测人员 动态,精准判断其是否误入危险区域;密切关注设备运 行状态,及时发现超载运行等异常情况;对基坑位移等 关键指标进行持续监测。一旦监测数据超出预设阈值, 系统会迅速自动触发声光报警机制,并同步将详细信息 推送至管理人员的手机端,确保管理人员能够在第一时 间掌握现场安全状况,及时采取有效处置措施。(2)借 助BIM技术构建安全防护模型,在该模型中清晰标识出 高空作业区、临边洞口等危险部位,同时关联相应的安 全操作规程和应急处理措施,为施工人员提供直观、明 确的安全指引,降低违规操作和安全事故发生的概率。 (3)建立安全隐患排查APP,施工人员可通过该APP便 捷地上传隐患照片及精准位置信息。管理人员在系统中合 理分配整改任务, 并实时跟踪整改进度, 形成隐患排查、 整改、复查的完整闭环管理流程。同时,利用VR技术对 施工人员进行安全培训,模拟高空坠落、触电等事故场 景,强化施工人员的安全意识,提升其应急处理能力。

4 保障建筑施工管理中信息技术有效运用的措施

4.1 深化技术融合与应用

深化信息技术与建筑施工管理的融合是提升应用效果的关键。企业应根据项目特点和管理需求,制定信息技术应用规划,推动BIM、物联网、大数据等技术在进度、质量、安全、成本等核心管理环节的深度应用。例如,将BIM技术与成本管理结合,实现工程量自动计算和成本动态核算;将物联网数据与进度管理系统关联,实现进度的自动预警和调整。同时,积极引进先进的管理平台和软件,如一体化项目管理平台,实现各管理模块的数据互通和协同工作,发挥信息技术的综合效益。鼓励技术创新,与科研机构合作开发适用于建筑施工管理的信息技术产品,如针对复杂地质条件的施工监测系统、基于人工智能的安全风险预测模型等,推动技术应用向智能化、精细化发展。

4.2 加强专业人才培养

加强专业人才培养是确保信息技术在施工管理中得 以有效运用的坚实基础。高校作为人才培养的源头,需 积极调整建筑工程专业课程体系。在课程设置上,大幅 增加BIM应用、项目管理软件操作、物联网技术等与信息 技术紧密相关的课程内容,构建系统全面的知识体系。 同时,深化校企合作,与企业建立长期稳定的合作关 系,为学生搭建实践平台,提供参与实际施工管理项目 的机会,让学生在实践中积累经验,成长为既精通施工 管理专业知识又熟练掌握信息技术的复合型人才。企业 则应构建完善的培训体系, 定期组织管理人员参与信息 技术培训。培训内容涵盖BIM平台操作、大数据分析、智 能监控系统使用等多个方面,邀请行业内的资深专家进 行授课,并分享实际案例,提升管理人员的技术应用能 力。此外,建立科学合理的激励机制,对能够熟练掌握 并有效应用信息技术的员工给予物质和精神奖励, 充分 调动员工学习信息技术的积极性。

4.3 构建数据共享与管理平台

构建统一的数据共享与管理平台是解决信息孤岛问 题的重要措施。平台应整合各参与方的数据资源,制定 统一的数据标准和格式,实现施工图纸、进度数据、质量记录等信息的实时共享和协同管理。采用云计算和大数据技术搭建平台,实现数据的集中存储、备份和分析,确保数据安全和可靠性。平台应具备数据查询、统计分析、报表生成等功能,为管理人员提供数据支持,辅助决策。例如,通过平台分析不同项目的成本数据,总结成本控制规律,为新项目的成本预算提供参考。建立数据管理责任制,明确各参与方的数据录入、更新和维护职责,确保数据的准确性和及时性。同时,加强数据安全管理,设置访问权限,防止数据泄露和篡改,保障平台的稳定运行^[4]。

结束语

建筑施工管理中信息技术的运用意义重大,既能提升管理效率、保障工程质量、降低成本,又能强化安全管理。然而,当前应用存在技术深度不足、人才匮乏、数据共享与管理不畅等问题。为此,需采取针对性措施,深化信息技术与施工管理的融合,推动其在核心环节深度应用;加强高校与企业合作,培养复合型人才,完善企业培训与激励机制;构建统一的数据共享与管理平台,解决信息孤岛问题,保障数据安全准确。通过这些举措,充分发挥信息技术优势,推动建筑施工管理向智能化、精细化、高效化方向发展,提升行业整体竞争力,实现可持续发展。

参考文献

[1]崔现沅.建筑信息模型(BIM)技术在建筑工程施工管理中的应用[J].工程建设与设计,2021(24):100-102+111.

[2]林煜珠.建筑施工管理中信息技术的运用[J].低碳世界,2023,13(08):124-126.

[3]施晓哲.建筑施工管理中融合现代信息技术的实践 [J].工程与建设.2022.36(03):851-853.

[4]张广智.工程建筑施工管理中信息技术的应用分析 [J].大众标准化,2021,(13):28-30.