绿色施工理念在中小型水库工程中的实践与效益评价

王少杰

宁夏中金伟业建设工程有限公司 宁夏 银川 750100

摘 要:绿色施工护生态,水库建设启新篇。在全球生态危机加剧与"双碳"目标驱动下,水利工程正经历从"工程优先"到"生态优先"的范式转型。本文聚焦绿色施工理念在中小型水库工程中的应用,先阐述该理念在工程中的核心内涵与重要价值,再从资源节约型技术体系构建、生态保护型施工工艺创新、全生命周期管理体系优化三方面,详细分析实践路径,涵盖材料与水资源循环利用、能源低碳改造、生物多样性保护等关键技术与机制。最后从经济、环境、社会及可持续性维度开展效益评价,旨在为中小型水库工程绿色化建设提供实践参考,推动工程建设与生态保护协同发展,助力水利行业可持续发展目标实现。

关键词:绿色施工理念;中小型水库工程;实践;效益评价

引言:中小型水库作为水利基础设施的重要组成,在防洪、灌溉、供水等方面发挥关键作用,但传统施工易引发资源浪费、生态破坏等问题。随着绿色发展理念深入人心,将绿色施工理念融入中小型水库工程建设成为必然趋势。当前,部分工程在绿色施工实践中存在技术体系不完善、效益评价不全面等问题。本文通过梳理绿色施工理念在中小型水库工程中的内涵,探索科学可行的实践路径,构建多维度效益评价体系,以期提升工程绿色施工水平,实现工程建设与生态、社会、经济的协调发展,为同类工程提供借鉴。

1 绿色施工理念在中小型水库工程中的概述

绿色施工理念在中小型水库工程中,强调在工程建设全过程中践行资源节约、环境保护与生态修复的可持续发展原则。其核心在于通过科学管理与技术创新,实现经济效益、社会效益与生态效益的有机统一。在中小型水库工程中,这一理念体现为:优先选用本地化、可再生材料,如利用改良钢渣替代传统防水层,降低资源消耗与运输成本;采用雨水收集系统、废水循环利用技术,提高水资源利用率;通过低噪声设备、隔音屏障及精准爆破技术,减少施工对周边生态的干扰;结合BIM技术优化施工方案,动态调整施工参数以降低能耗;同时,注重施工期生态修复,如采用植被过渡带、抗冲刷植物群落等生物防护措施,维护库区生物多样性¹¹。

2 绿色施工理念在中小型水库工程中的实践路径

2.1 资源节约型技术体系构建

2.1.1 材料循环利用技术

在中小型水库工程里,材料循环利用技术是资源节约的关键。施工时,对开挖产生的土石方进行科学调配,将符合要求的土石用于坝体填筑,减少外购土石

量,降低运输成本与资源消耗。对于拆除的旧混凝土结构,经破碎、筛分处理后,作为再生骨料用于制作临时道路基层或低强度等级混凝土,实现废弃材料的再利用。同时,推广使用可周转材料,如定型钢模板、铝合金模板等,替代传统木模板,不仅提高了模板的使用次数,还减少了木材砍伐。因此,建立材料管理系统,对材料的采购、使用、回收等环节进行全程跟踪,精确控制材料用量,避免浪费,使材料循环利用率得到显著提升,有效节约了工程建设成本。

2.1.2 水资源循环利用系统

构建水资源循环利用系统对中小型水库工程至关重要。在施工现场设置雨水收集池,收集降雨径流,经沉淀、过滤处理后,用于洒水降尘、车辆冲洗等非饮用水环节。对于施工产生的废水,如混凝土养护废水、机械设备清洗废水等,建立污水处理站,采用物理、化学和生物相结合的处理工艺,使废水达标后回用于施工生产。同时,优化施工用水工艺,例如采用喷雾养护代替传统浇水养护,减少水的用量。在水库运营阶段,利用水库蓄水功能,合理调配水资源,满足周边农业灌溉、生活用水等需求,实现水资源的最大化利用,提高水资源的循环利用率,降低对外部水资源的依赖。

2.1.3 能源低碳化改造

能源低碳化改造是中小型水库工程绿色施工的重要方向。在施工设备方面,逐步淘汰高能耗、高排放的燃油设备,推广使用电动挖掘机、电动装载机等新能源设备,降低设备运行过程中的碳排放。同时,对现有设备进行节能改造,如安装节能电机、变频器等,提高设备的能源利用效率。在施工现场照明方面,采用太阳能路灯和LED节能灯具,减少电力消耗。此外,结合水库工

程的地理位置和资源条件,合理开发利用可再生能源,如在水库周边建设小型风力发电装置或太阳能光伏电站,为施工现场的临时用电和部分永久设施供电,实现能源的自给自足,减少对传统化石能源的依赖,推动工程建设向低碳、环保方向发展。

2.2 生态保护型施工工艺创新

2.2.1 生物多样性保护技术

在中小型水库工程建设中,生物多样性保护技术至 关重要。施工前,开展全面的生态调查,明确工程区域 内的动植物种类、分布及生态习性,制定针对性保护方 案。例如,对于水库周边的珍稀植物,采用原地保护与 异地移植相结合的方式,在施工现场设置专门的植物保 护区,对受影响区域的植物进行移植栽培,确保其存活 率。对于野生动物,合理规划施工时间,避开其繁殖、 迁徙等关键时期,减少对其生存的干扰。同时,在库区 周边营造生态廊道,种植多样化的乡土植物,为野生动 物提供栖息和迁徙的通道,促进生物群落的恢复和发 展,维护生态系统的平衡与稳定。

2.2.2 土壤侵蚀防控体系

构建完善的土壤侵蚀防控体系是保护水库周边生态环境的关键。在施工区域,根据地形地貌和土壤类型,采用工程措施与生物措施相结合的方法。工程方面,设置截水沟、排水沟等排水设施,及时排除地表径流,防止水流对土壤的冲刷;在边坡部位,采用挡土墙、护坡桩等支护结构,增强边坡的稳定性。生物措施上,在施工结束后,及时对裸露土地进行植被恢复,选择根系发达、固土能力强的草本植物和灌木进行种植,形成植被覆盖层,减少土壤侵蚀。此外,合理规划施工道路和临时场地,减少对原地面的扰动,从源头上控制土壤侵蚀的发生。

2.2.3 施工污染动态管控

施工污染动态管控是保障水库水质和周边环境安全的重要环节。建立全方位的污染监测体系,对施工过程中的废水、废气、废渣和噪声等污染物进行实时监测。针对废水,设置污水处理设施,对施工废水和生活污水进行分类处理,达标后排放或回用。对于废气,采用酒水降尘、封闭运输等措施,减少扬尘污染;对施工机械和车辆安装尾气净化装置,降低废气排放。在废渣处理方面,对建筑垃圾进行分类回收利用,无法利用的及时清运至指定地点处置。同时,通过设置隔音屏障、合理安排施工时间等方式,控制施工噪声对周边居民和生态环境的影响。定期对监测数据进行分析评估,及时调整管控措施,确保施工污染得到有效控制。

2.3 全生命周期管理体系优化

2.3.1 数字化施工管理平台

在中小型水库工程中搭建数字化施工管理平台,是实现全生命周期精细化管理的重要手段。该平台整合了工程规划、设计、施工、运营等各阶段的数据信息,通过地理信息系统(GIS)、建筑信息模型(BIM)等技术,实现工程的三维可视化展示。施工前,利用平台进行虚拟建造模拟,提前发现并解决潜在问题,优化施工方案;施工中,通过传感器实时采集现场数据,如设备运行状态、材料使用情况、环境指标等,实现对施工过程的动态监控和精准调度。例如,当监测到混凝土浇筑温度异常时,系统立即发出预警,施工人员可及时采取降温措施。同时,平台还具备数据分析功能,为决策提供科学依据。数字化施工管理平台的应用,提高了管理效率,减少了资源浪费,保障了工程质量和施工安全,推动了水库工程全生命周期的数字化、智能化管理。

2.3.2 绿色施工绩效评估机制

建立科学合理的绿色施工绩效评估机制,是衡量中小型水库工程绿色施工成效的关键。该机制围绕资源节约、环境保护、生态修复等方面制定详细的评估指标体系,涵盖材料循环利用率、水资源重复利用率、能源消耗降低率、污染物排放达标率等量化指标,以及生物多样性保护效果、土壤侵蚀防控成效等定性指标。定期对工程各阶段的绿色施工绩效进行评估,通过实地考察、数据统计、问卷调查等方式收集信息,运用层次分析法、模糊综合评价法等方法进行综合分析。根据评估结果,对表现优秀的施工团队给予奖励,对存在问题的环节提出改进建议并跟踪落实。绿色施工绩效评估机制的建立,促进了施工过程的持续优化,推动了中小型水库工程绿色施工水平的不断提升^[2]。

3 中小型水库工程绿色施工效益评价

3.1 经济效益评价

中小型水库工程采用绿色施工理念能带来显著的经济效益。从成本节约角度来看,资源节约型技术体系的应用大幅降低了材料与能源成本。材料循环利用技术使开挖土石方、废弃混凝土等得以重新利用,减少了外购材料的费用支出;水资源循环利用系统降低了施工用水及废水处理成本;能源低碳化改造通过使用新能源设备和节能技术,减少了燃油、电力等能源消耗费用。在施工效率方面,数字化施工管理平台实现了施工过程的精准调度与动态监控,减少了施工延误和窝工现象,提高了施工效率,缩短了工期,进而降低了工程管理成本和设备租赁费用。此外,绿色施工提升了工程的社会形象

和市场竞争力,有助于吸引更多的投资和合作机会。同时,符合国家绿色发展政策,可能获得政府的资金补贴和税收优惠等政策支持,进一步增加了经济效益。

3.2 环境效益评价

中小型水库工程践行绿色施工理念,在环境效益方面成果斐然。在水资源保护上,水资源循环利用系统减少了施工废水排放,降低了对周边水体的污染风险。同时,合理规划用水,提高了水资源利用效率,保障了水库周边生态用水的稳定供应,有利于维持水生生物的生存环境。大气环境质量也得到显著改善。通过采用低排放施工设备、洒水降尘、封闭运输等措施,有效控制了施工扬尘和废气排放,减少了空气中颗粒物和有害气体的含量,降低了对周边居民和生态环境的危害。在土壤保护方面,生物多样性保护技术和土壤侵蚀防控体系发挥了重要作用。前者为动植物提供了适宜的栖息和繁衍场所,促进了生物多样性的恢复;后者通过工程和生物措施相结合,减少了施工过程中的土壤侵蚀,防止了水土流失,保护了土壤肥力,有利于周边植被的生长和生态系统的稳定。

3.3 社会效益评价

中小型水库工程实施绿色施工, 在社会层面产生了 广泛且积极的影响。从民生保障角度来看,绿色施工注 重生态保护与资源合理利用,确保了水库工程建成后 能稳定、高效地发挥供水、灌溉、防洪等功能。稳定的 水源供应保障了周边居民的生活用水安全, 可靠的灌溉 条件促进了农业生产发展,提高了粮食产量,为区域粮 食安全奠定基础,增强了社会的稳定性。在就业与经济 发展方面,绿色施工项目通常采用先进的施工技术和理 念,吸引了相关领域的专业人才汇聚,为当地创造了大 量就业机会,涵盖工程建设、技术管理、后期维护等多 个环节。同时, 工程的顺利推进带动了周边建材、运 输、餐饮等产业的发展,促进了区域经济的繁荣。此 外,绿色施工的示范效应显著。中小型水库作为重要的 基础设施工程,其绿色施工模式为其他类似工程提供了 可借鉴的经验和范例,推动了整个行业向绿色、可持续 方向转型,提升了社会对绿色发展的认知和重视程度, 营造了良好的社会氛围,促进了人与自然的和谐共生。

3.4 可持续性效益评价

中小型水库工程绿色施工展现出显著的可持续性效 益。在资源可持续利用上,材料循环利用技术、水资源 循环利用系统以及能源低碳化改造,实现了资源的高效 利用与循环再生。通过减少对自然资源的开采和消耗, 降低了资源枯竭风险,保障了资源的长期稳定供应,为 水库工程的持续运行和区域发展提供了坚实的资源基 础。生态可持续性方面,生物多样性保护技术和土壤侵 蚀防控体系维护了水库周边的生态平衡。植被的恢复与 生物栖息地的保护,增强了生态系统的稳定性和自我修 复能力,有助于抵御自然灾害和气候变化的影响,确保 水库生态环境的长期健康。从工程自身可持续发展来 看,绿色施工提升了工程的质量和耐久性,减少了后期 维护成本和运营风险。同时, 其先进理念和技术为后续 工程改造和升级提供了有利条件, 使水库工程能够适应 不断变化的社会需求和环境条件,实现长期、稳定、高 效的运行,为区域可持续发展提供有力支撑[3]。

结束语

绿色施工理念在中小型水库工程中的实践,是工程建设与生态环境协调共生的有益探索。通过构建资源节约型技术体系、创新生态保护型施工工艺、优化全生命周期管理体系,工程在经济效益上实现了成本降低与资源高效利用,环境效益上促进了水资源保护与生态修复,社会效益上保障了民生并带动区域发展,可持续性效益上为工程长期稳定运行筑牢根基。未来,应持续深化绿色施工理念的应用,不断优化技术与管理体系,加强各方协作与监督,让更多中小型水库工程成为绿色发展的典范,为水利事业可持续发展和美丽中国建设贡献力量。

参考文献

[1]张文洁.现代化水库运行管理矩阵构建与重点问题解析[J].中国水利,2023,(22):1-5.

[2]杨兆辉.绿色施工理念在中小型水库工程中的实践路径[J].治淮,2023,(11):48-49.

[3]姚殿福.中小型水库工程绿色施工效益评价[J].石家 庄职业技术学院学报,2022,34(06):29-32.