大跨度钢结构屋盖安装方法对比与关键技术分析

蒯杰

安徽建工建设安装集团有限公司 安徽 滁州 239000

摘 要:本文聚焦于大跨度钢结构屋盖安装方法,详细对比了常见的几种安装方法,包括高空散装法、分条 (块)安装法、整体提升法、整体顶升法以及滑移安装法等。深入分析了每种方法的适用范围、优缺点,并结合实际 工程案例,对大跨度钢结构屋盖安装过程中的关键技术,如测量定位技术、临时支撑技术、焊接技术、同步控制技术 等进行了剖析。旨在为大跨度钢结构屋盖的安装提供全面的技术参考,提高安装质量和效率,确保工程安全。

关键词:大跨度钢结构屋盖;安装方法;对比分析;关键技术

1 引言

随着建筑行业的蓬勃发展,大跨度钢结构屋盖凭借其独特的造型、较轻的自重以及良好的抗震性能,在体育场馆、会展中心、机场航站楼等大型公共建筑中得到了广泛应用。然而,大跨度钢结构屋盖的安装过程极为复杂,技术难度颇高,对安装方法和关键技术的选择与应用提出了严苛要求。合适的安装方法能够确保钢结构屋盖顺利安装,保证工程质量,提高施工效率并降低成本。因此,对大跨度钢结构屋盖安装方法进行对比分析,并深入研究其关键技术具有重要的现实意义。

2 大跨度钢结构屋盖常见安装方法对比

2.1 高空散装法

高空散装法是指将钢结构的杆件和节点直接在设计 位置进行拼装的方法。该方法适用于螺栓连接较多的钢 结构,如网架、网壳等。适用于各种类型和规模的大 跨度钢结构屋盖, 尤其适用于现场条件允许, 且有足够 拼装空间的情况。优点是不需要大型起重设备, 拼装灵 活性大。可以根据现场实际情况随时调整拼装顺序和位 置。对构件的制作精度要求相对较低。缺点是高空作业 量大,安全风险高。拼装周期长,施工效率低。需要大 量的脚手架和临时支撑,成本较高。某体育场网架结构 屋盖安装工程,采用高空散装法进行安装。该体育场规 模较大, 网架结构复杂, 跨度达120m。在安装过程中, 设置了大量的脚手架和临时支撑, 脚手架高度最高达 30m。施工人员在高空进行杆件和节点的拼装,经过110 天的施工,顺利完成了网架的安装任务。期间虽未发生 重大安全事故,但小剐小蹭等轻微事故仍时有发生,主 要原因是高空作业环境复杂,人员操作难度大。

2.2 分条 (块)安装法

分条(块)安装法是将钢结构屋盖划分成若干条状 或块状单元,在地面进行拼装后,用起重设备将其吊装 至设计位置进行拼接的方法。适用于分割后刚度和受力状况改变较小的钢结构屋盖,如平板型网架、桁架结构等。优点是减少了高空作业量,提高了施工安全性。地面拼装可以提高拼装质量和效率[1]。可以利用小型起重设备进行吊装,降低成本。缺点是分条(块)的划分需要根据结构特点和起重设备能力进行合理设计,否则会增加拼接难度。拼接过程中需要保证各单元的定位精度,对测量控制要求较高。某会展中心钢结构屋盖安装工程,采用分块安装法。该会展中心屋盖为桁架结构,跨度为90m。根据桁架的跨度和起重设备的性能,将屋盖划分为6个块状单元,每个单元重约80-100t。在地面进行单元拼装后,使用300t大型汽车吊将其吊装至设计位置进行拼接。通过合理的分块设计和精确的测量控制,拼接误差控制在±2.5mm以内,顺利完成了屋盖的安装,保证了工程质量。整个安装过程耗时60天,比原计划提前了10天。

2.3 整体提升法

整体提升法是将钢结构屋盖在地面拼装成整体后,利用提升设备将其整体提升至设计位置的方法。适用于周边支承或点支承的大跨度钢结构屋盖,且现场有足够的拼装空间和提升设备布置条件。优点是钢结构屋盖在地面拼装,质量容易保证,施工效率高。高空作业量少,安全风险低。对周边环境影响小,适用于在城市中心等对施工干扰要求较高的区域。缺点是需要大型的提升设备和专业的提升技术,成本较高。提升过程中需要保证各提升点的同步性,对控制技术要求较高。某机场航站楼钢结构屋盖安装工程,采用整体提升法。该航站楼屋盖结构复杂,跨度达200m,重约3000t。在地面完成屋盖的整体拼装后,使用了8台100t的液压提升器将其整体提升至设计位置。在提升过程中,采用了先进的同步控制技术,通过传感器实时监测各提升点的位移和受力情况,并根据监测数据自动调整提升速度。经过8小时的

提升,屋盖准确就位,安装质量达到了设计要求。提升过程中的同步误差控制在±3mm以内,确保了结构的安全性和稳定性。

2.4 整体顶升法

整体顶升法与整体提升法类似, 是将钢结构屋盖在 地面拼装成整体后,利用千斤顶等顶升设备将其整体顶 升至设计位置的方法。适用于支点较少的大跨度钢结构 屋盖,如柱顶支承的网架、桁架等。优点是原理简单, 操作方便。高空作业量少,安全性高[2]。可以利用结构 本身的柱子作为顶升的支承点,减少临时设施的投入。 缺点是顶升速度较慢,施工周期长。对千斤顶等顶升设 备的性能要求较高,需要保证顶升过程的平稳性和同步 性。某体育馆钢结构屋盖安装工程,采用整体顶升法。 该体育馆屋盖为网架结构,重约800t,支承在四根柱子 上。在地面完成网架的整体拼装后,将4台200t的千斤顶 布置在柱顶,通过顶升网架使其逐渐上升至设计位置。在 顶升过程中,设置了专门的监控系统,实时监测网架的顶 升高度和位移。每顶升500mm, 暂停一次, 检查千斤顶 的工作状态和网架的受力情况。经过12天的顶升, 网架 准确就位,安装质量符合设计要求。顶升过程中的同步 误差控制在±4mm以内,确保了结构的安全性和稳定性。

2.5 滑移安装法

滑移安装法是将钢结构屋盖在地面或低空拼装后, 通过设置在轨道上的滑移设备将其滑移至设计位置的方 法。适用于场地狭小或跨越其他建筑物、构筑物的大跨 度钢结构屋盖安装工程。优点是可以减少高空作业量, 提高施工安全性。对现场场地要求较低,适用于场地受 限的工程。可以与其他施工工序交叉进行,缩短施工周 期。缺点是滑移过程中需要克服摩擦力,对滑移设备和 轨道的要求较高。需要保证滑移过程的平稳性和同步 性,对控制技术要求较高。某大型商场钢结构连廊安装 工程,采用滑移安装法。该连廊跨度为60m,重约300t, 跨越商场内部的中庭,现场施工空间有限。在商场一侧 设置拼装平台,将连廊钢结构在平台上拼装完成后,通 过滑移设备将其滑移至设计位置。在滑移过程中,采用 了润滑剂减少摩擦力,润滑剂的摩擦系数可降低至0.05-0.1。同时,设置了专门的同步控制装置,确保了连廊的 顺利滑移和准确就位。滑移速度控制在0.5-1m/min,同步 误差控制在±3mm以内,整个滑移过程耗时8小时,比原 计划提前了2小时完成。

3 大跨度钢结构屋盖安装关键技术分析

3.1 测量定位技术

在安装过程中,需要建立精确的测量控制网,对钢

结构的各个部位进行准确的测量和定位。根据工程特点 和现场实际情况,建立高精度的平面控制网和高程控制 网。平面控制网可以采用三角测量、导线测量等方法进 行布设, 高程控制网可以采用水准测量方法进行布设。 控制网的精度应满足设计要求和相关规范标准,一般平 面控制网的边长相对中误差应控制在1/20000-1/40000之 间,高程控制网每千米高差中误差应控制在±2mm以内。 在构件安装过程中,使用全站仪、激光铅直仪等高精度 测量仪器对构件的位置、垂直度、平整度等进行实时测 量和调整。对于大型构件,如桁架、网架等,需要进行 预拼装测量,确保构件的尺寸和形状符合设计要求。预 拼装测量时,构件的拼接间隙应控制在±2mm以内,垂直 度偏差应控制在H/1000(H为构件高度)以内。在钢结构 屋盖安装过程中和安装完成后,需要对结构进行变形监 测。采用水准仪、全站仪等仪器对结构的沉降、位移、 倾斜等进行定期测量,及时发现结构的变形情况,并采 取相应的措施进行调整和处理[3]。变形监测的频率应根据 施工进度和结构变形情况确定,一般在安装过程中每天 监测1-2次,安装完成后每周监测1次。监测数据的误差应 控制在±1mm以内。

3.2 临时支撑技术

常见的临时支撑类型有钢管支架、型钢支架、门式 支架等。钢管支架具有搭设灵活、承载能力大等优点, 广泛应用于大跨度钢结构屋盖安装工程;型钢支架适 用于跨度较大、荷载较重的结构;门式支架具有结构简 单、安装方便等特点,常用于小型结构的临时支撑。例 如,对于一个重1000t、跨度为100m的钢结构屋盖,可采 用钢管支架作为临时支撑,钢管的直径一般为Φ48-Φ60, 壁厚为3-5mm, 支架的间距根据荷载计算确定, 一般为 1.5-2m。临时支撑的设计应满足强度、刚度和稳定性要 求。根据结构的重量和安装过程中的荷载情况, 计算临 时支撑的承载能力,选择合适的支撑材料和截面尺寸。 同时, 要考虑临时支撑与永久结构的连接方式, 确保在 拆除临时支撑时不会对永久结构造成损坏。例如,在设 计钢管支架时,需要进行稳定性验算,稳定性系数应大 于1.5、以确保支架在荷载作用下不会发生失稳破坏。 临时支撑的布置应根据结构的形状和受力特点进行合理 布置。在结构的关键部位,如节点、跨中等位置应设置 临时支撑,以保证结构的稳定性。同时,要避免临时支 撑与构件的安装发生冲突,影响施工进度。例如,对于 网架结构,临时支撑应布置在网架的下弦节点处,支撑 点的间距可根据网架的跨度和荷载情况确定,一般为 $3-5m_{\circ}$

3.3 焊接技术

焊接是大跨度钢结构屋盖安装中常用的连接方式, 焊接质量直接影响到结构的安全性和耐久性。因此,需 要严格控制焊接工艺和焊接质量。在焊接前,应根据 钢材的材质、规格、焊接方法等因素进行焊接工艺评 定,确定合适的焊接参数和焊接工艺。焊接工艺评定应 按照相关规范标准进行,确保评定结果的有效性和可靠 性。例如,对于Q345B钢材的对接焊缝,采用手工电弧 焊时,焊接电流应控制在160-200A,焊接电压应控制在 22-26V, 焊接速度应控制在15-20cm/min。焊工是保证 焊接质量的关键因素, 应对焊工进行专业培训, 使其熟 悉焊接工艺和焊接质量要求。同时,要建立焊工档案, 对焊工的焊接质量进行跟踪和考核,不合格的焊工不得 从事焊接作业。焊工培训内容应包括焊接理论知识、实 际操作技能和质量检验方法等,培训时间一般不少于72 学时。在焊接过程中,要严格按照焊接工艺要求进行操 作,控制焊接电流、电压、焊接速度等参数。加强焊接 现场的质量检查,对焊缝的外观质量、尺寸偏差等进行 检查,发现问题及时处理。对于重要的焊缝,应进行无 损检测,如超声波检测、射线检测等,确保焊缝质量符 合设计要求。

3.4 同步控制技术

在大跨度钢结构屋盖的整体提升、整体顶升和滑移 安装等过程中,需要保证各提升点、顶升点或滑移点的 同步性,以避免结构因受力不均而发生变形或损坏。同 步控制技术是实现这一目标的关键。同步控制系统一般 由传感器、控制器和执行机构等部分组成。传感器用于 实时监测各点的位移、速度等参数,并将信号传输给控 制器;控制器根据传感器反馈的信号进行分析和处理, 发出控制指令;执行机构根据控制指令调整各点的运动 状态,实现同步控制。常见的同步控制方法有位移同步 控制、速度同步控制和力同步控制等[4]。位移同步控制 是根据各点的设计位移,通过控制器调整执行机构的动作,使各点的实际位移与设计位移保持一致;速度同步控制是保证各点的运动速度相同;力同步控制是根据各点的受力情况,调整执行机构的输出力,使各点的受力均匀。同步控制精度直接影响到结构的安全性和安装质量。根据工程实际情况和相关规范标准,确定合理的同步控制精度要求。在提升、顶升和滑移过程中,应实时监测各点的同步情况,当偏差超过允许值时,应及时调整,确保同步控制的精度。

结语

大跨度钢结构屋盖安装方法多种多样,每种方法都有其适用范围、优缺点。在实际工程中,应根据结构形式、现场条件、施工设备等因素综合考虑,选择合适的安装方法。同时,大跨度钢结构屋盖安装过程中涉及到测量定位技术、临时支撑技术、焊接技术、同步控制技术等关键技术,这些关键技术的合理应用直接影响到安装质量和工程安全。因此,施工人员应熟练掌握这些关键技术,严格按照相关规范标准进行操作,加强施工过程中的质量控制和安全管理,确保大跨度钢结构屋盖的顺利安装。随着建筑技术的不断发展,大跨度钢结构屋盖安装技术也将不断创新和完善,为大型公共建筑的建设提供更加可靠的技术支持。

参考文献

[1]王志强.屋盖大跨度钢结构与坚向支撑组合体系施工技术[J].建筑技术,2025,56(05):523-526.

[2]陈杰,唐良,张嘉辰.基于大跨度钢结构体育馆屋盖的施工技术[J].中国建筑金属结构,2025,24(07):92-96.

[3]刘兴,苏铠,黄云,等.一种大跨度桁架组成的钢结构 屋盖施工技术[J].建筑技术开发,2025,52(06):46-48.

[4]庄勇杰,杨荧荧,陈丽彬,等.大跨度张弦梁结构屋盖安装质量控制及施工技术优化[J].居业,2024,(02):67-69.