道路与桥梁工程的常见病害及处理技术研究

赵立中

安徽省六安市裕安区公路管理中心 安徽 六安 237010

摘 要: 道路与桥梁工程是交通基础设施的重要组成部分,其常见病害会影响结构和安全性。本文总结了道路与桥梁工程中常见的病害及处理技术,包括路基沉降、桥梁裂缝等,探讨了相应的处理方法和措施。有效的处理技术可以提高道路与桥梁的质量和安全性,保障交通运行的安全。

关键词: 道路与桥梁; 病害; 处理技术

引言:随着社会科学技术迅速发展,虽然道路桥梁施工技术已取得了一些成绩,但就目前的施工状况而言,路面桥梁施工技术仍然面临着质量危害问题,并未能得到有效处理,所以,必须避免影响或解决目前道路路桥施工过程中出现的问题,从根本上保证工程质量,从而推动了路面桥梁施工技术水平的稳步提高。

1 道路桥梁工程病害处理的重要性

道路桥梁工程病害处理是保证道路桥梁安全、延长 使用寿命的重要手段。随着社会经济的快速发展, 道路 交通需求不断增加, 道路桥梁工程的规模和数量也在不 断扩大。由于自然条件、设计缺陷、施工质量等原因, 路面桥梁工程在行驶过程中易发生各类病害,如开裂、 变形、漏水、锈蚀等。此类病害不但妨碍路面桥梁的正 常通过,还可以造成重大的事故。道路桥梁工程病害处 理显得尤为重要。道路桥梁工程病害处理有助于提高道 路桥梁的安全性能。道路桥梁的安全性能直接关系到人 民群众的生命财产安全。通过及时、有效的病害处理措 施,可以及时发现并消除潜在的安全隐患,降低交通事 故的发生概率。采用高性能的材料和先进的施工技术, 可以减少结构损伤的发生;加强日常巡查和维护管理, 可以及时发现并处理潜在问题, 避免因病害导致的大规 模维修。道路桥梁工程病害处理有助于提高道路交通效 率。道路桥梁作为交通基础设施的重要组成部分,其运 行状况直接影响到道路交通的畅通程度[1]。通过及时、 有效的病害处理措施,可以提高道路桥梁的使用性能, 减少因病害导致的交通拥堵现象,从而提高道路交通效 率。道路桥梁工程病害处理对于保障道路交通安全、延 长使用寿命、降低维修成本和运营成本以及提高道路交 通效率具有重要意义。因此,有关部门应加大对道路桥 梁工程病害处理的重视力度,采取有效措施,确保道路 桥梁工程的安全、稳定、高效运行。

2 道路与桥梁工程的常见病害

2.1 路基沉降

路基沉降是道路与桥梁工程中常见的病害之一,主 要表现为路面出现不均匀的下沉或隆起现象。这种现象 不仅影响行车安全,还会对周边建筑物和基础设施造成 损害。路基沉降的原因多种多样,包括地质条件、设计 不合理、施工质量差等。地质条件对路基沉降有很大影 响。在建设过程中,如果遇到不良地质条件,如地下水 位高、土质疏松、岩石分布不均匀等,都可能导致路基 沉降。地下水的渗透也会导致路基承载力下降,从而引 发沉降。设计不合理也是导致路基沉降的重要原因。在 设计阶段,如果对地形、地质、水文等因素考虑不足, 可能会导致设计方案过于简化或不够合理。坡度设置过 大、排水系统设计不合理等,都可能增加路基沉降的风 险。施工质量差也是导致路基沉降的关键因素。在施工 过程中, 如果施工人员技术水平不高、施工管理水平不 足,可能会导致路基压实度不够、填料选择不当等问 题。这些问题都会影响路基的稳定性,从而导致沉降。

2.2 路面损坏

道路与桥梁工程是城市建设和交通发展的重要组成部分,然而在实际使用过程中,由于各种原因,道路与桥梁工程会出现各种病害,其中路面损坏是最常见的一种。本文将对道路与桥梁工程中常见的路面损坏进行分析和探讨。路面损坏的原因有很多,包括自然因素和人为因素。自然因素主要包括地质条件、气候条件等,如地下水位高、地基承载力不足、冻胀等;人为因素主要包括超载、超速、违规施工等,如车辆超载导致路面承载力不足、车辆超速导致路面磨损加剧等。路面损坏的表现形式多样,主要包括裂缝、坑槽、车辙、松散等。裂缝是路面损坏的早期表现,主要是由于温度变化、地基沉降等原因导致的;坑槽则是路面局部凹陷的现象,主要是由于路面材料质量差、施工工艺不规范等原因导致的;车辙是车辆行驶过程中轮胎与路面摩擦产生的表

面痕迹,严重影响行车安全;松散则是路面材料内部结构破坏导致的路面整体强度下降。

2.3 桥梁裂缝

桥梁裂缝是道路与桥梁工程中常见的病害,它不仅 影响了桥梁的美观,还可能导致安全隐患。桥梁裂缝的 产生原因多种多样,包括设计、施工、材料等多方面因 素。桥梁设计不合理,如荷载计算错误、结构形式选择 不当等,可能导致桥梁在使用过程中产生裂缝。设计时 未充分考虑地质条件、气候特点等因素,也可能导致桥 梁裂缝的产生。施工过程中,施工质量不过关、施工工 艺不规范等问题都可能导致桥梁裂缝的产生。例如,混 凝土浇筑时振捣不密实、养护不及时等,都可能使混凝 土产生裂缝。钢筋焊接质量不高、钢筋连接方式不当等 也可能导致桥梁出现裂缝。桥梁建设中使用的材料质量 不过关,如水泥、钢筋等材料不合格,可能导致桥梁产 生裂缝。材料的储存、运输、使用过程中的管理不善, 也可能影响材料的性能,从而引发桥梁裂缝。桥梁所处 的环境条件对裂缝的产生也有影响。温度变化、湿度变 化等气候因素可能导致桥梁结构产生应力, 从而引发裂 缝。地震、洪水等自然灾害也可能导致桥梁裂缝的产 生。桥梁在使用过程中,如果超过了设计荷载,可能导 致桥梁结构受力过大,从而产生裂缝。

2.4 桥头跳车

桥头跳车是指在行驶过程中,车辆在通过桥梁时,由于车辆与桥梁之间的相对运动而产生的一种现象。这种现象会导致车辆行驶不稳定,给驾驶员和乘客带来不适,严重时甚至可能引发交通事故。桥梁的结构设计直接影响到车辆行驶的稳定性。如果桥梁的坡度、曲线半径等参数设计不合理,就可能导致车辆行驶过程中产生侧向力,从而引发桥头跳车。桥梁的材料质量直接关系到桥梁的使用寿命和安全性能。如果桥梁使用劣质材料或者施工质量问题导致桥梁强度不足,就会增加桥头跳车的风险^[2]。车辆超载会加大桥梁的荷载,使桥梁承受更大的压力,从而导致桥梁变形,增加桥头跳车的可能性。道路的平整度、坡度等因素都会影响车辆行驶的稳定性。如果道路状况不佳,车辆在通过桥梁时就容易产生侧向力,引发桥头跳车。

3 道路与桥梁工程病害处理技术研究

3.1 路基沉降处理技术

道路与桥梁工程中,路基沉降是一种常见的病害,可能对整个工程的安全性和稳定性造成严重影响。因土质不良或填筑不当引起的路基沉降,可以采用换填土处理。这种方法需要将软弱土层或不良填料挖除,然后换

填优质的填料,如砂砾、碎石等,再进行压实处理。这 样可以改善土质,提高路基的承载能力和稳定性。对于 一些无法完全挖除的软弱土层,可以采用固化剂处理。 在土层中加入一些固化剂,通过化学反应或物理作用, 使土层得到加固和稳定。这种方法适用于轻度路基沉降 的处理。地下水位过高或排水不畅引起的路基沉降,可 以采用排水固结处理。这种方法需要在路基中设置排水 设施,如排水管、排水板等,以降低地下水位和排除积 水。同时,对路基进行加固处理,如采用预压、注浆等 方法, 使其达到稳定状态。土工合成材料是一种新型的 路基处理材料,具有较高的强度和韧性,可以有效地提 高路基的承载能力和稳定性。通过将土工合成材料铺设 在路基表面或路基内部,可以增强路基的的整体性和稳 定性,减少路基沉降的发生。反压护道是一种常见的路 基沉降处理方法。通过在路堤两侧修建护道,可以增加 路堤的稳定性,减少路基沉降的发生。同时,反压护道 还可以有效地缓解桥头跳车等现象对路基的损坏。具体 的处理方法应根据病害的实际情况和工程要求进行选 择。在处理过程中,还需要加强施工管理和监测,确保 处理效果和质量。

3.2 路面损坏处理技术

道路与桥梁工程病害处理技术是保障道路和桥梁安 全、延长使用寿命的重要手段。常见的路面损坏类型包 括裂缝、坑槽、车辙、松散等。通过对路面损坏的观 察、测量和分析,可以确定损坏的类型、程度和范围, 为后续的修复提供依据。路面损坏处理技术的关键在于 选择合适的方法。针对不同的损坏类型,可以采用不同 的处理方法。对于裂缝,可以采用灌缝、开槽填充等方 式进行处理;对于坑槽,可以采用填砂、挖补等方式进 行处理;对于车辙,可以采用热再生、冷再生等方式进 行处理。在选择处理方法时,需要综合考虑成本、效 果、工期等因素,以达到最佳的修复效果。在施工过程 中,严格按照设计要求和施工规范进行操作,确保修复 后的路面达到预期的性能指标。还需要对修复后的路面 进行定期检查和维护, 以及时发现并处理可能出现的问 题。随着科技的进步,新型的材料和技术不断涌现,为 路面损坏处理提供了更多的可能性。例如,近年来出现 的自愈合材料、纳米技术等,有望在未来的路面修复中 发挥重要作用。因此,加强路面损坏处理技术的研究和 应用,对于提高道路和桥梁的使用寿命具有重要意义。 路面损坏处理技术作为其中的关键内容,需要根据具体 情况选择合适的处理方法,并在施工过程中严格控制质 量。同时,不断研究和探索新的技术和材料,以提高路 面修复的效果和效率。

3.3 桥梁裂缝处理技术

道路与桥梁工程病害处理技术是针对道路和桥梁在 使用过程中可能出现的各种问题进行修复和加固的技 术。桥梁裂缝处理技术是其中的一个重要组成部分,对 干确保桥梁的安全和稳定具有重要意义。通过对桥梁表 面进行检查,可以发现桥梁表面的裂缝。裂缝的识别主 要依靠观察、敲击、超声波检测等方法。根据裂缝的性 质、位置、形状等因素,将裂缝分为不同的类型。常见 的裂缝类型有:活动裂缝、静止裂缝、深层裂缝、浅层 裂缝等。对桥梁结构的材料性能、施工工艺、使用环境 等方面的分析,找出导致裂缝产生的原因。主要原因包 括: 材料老化、温度变化、荷载作用、地基沉降等。根 据裂缝的类型、原因和严重程度,制定相应的处理方 案。常见的处理方法有:封闭法、灌浆法、碳纤维加固 法、预应力加固法等。按照处理方案进行施工,确保裂 缝得到有效的修复[3]。施工过程中需要注意的问题包括: 施工质量、施工安全、施工进度等。通过对处理后的裂 缝进行检查,评估处理效果。检查内容包括:裂缝的宽 度、深度、密度等。如果处理效果不理想,需要重新制 定处理方案并进行施工。通过科学的裂缝识别、分类、 原因分析、处理方案设计和施工,可以有效地修复桥梁 裂缝,延长桥梁的使用寿命。

3.4 桥头跳车处理技术

道路与桥梁工程病害处理技术中的桥头跳车处理技术,是针对桥头跳车这一常见病害的重要处理方法。桥头跳车会给车辆行驶带来不舒适感,甚至会引发交通事故,因此对其处理技术的探讨具有重要意义。在路堤填筑前,对原地基进行加固处理,如采用深层搅拌桩、微型桩、钢筋混凝土桩等技术,提高原地基的承载力和稳定性,可以有效地减少沉降。针对地基土质不良的情况,可采用置换法或排水固结法等措施,对土质进行改

良,以提高地基的性能。选择轻质、透水性好的填料, 如泡沫塑料等,可以减轻路堤自重,减少对地基的压 力。同时,在填料选择时,要考虑其排水性能,以防止 水分在路堤和地基中滞留,避免因侵蚀而引起的沉降。 在搭板设计方面,应根据桥台与路堤的沉降差值进行合 理设置。搭板的一端支撑在桥台上,另一端支撑在路基 上,通过搭板缓解了桥台与路堤之间的沉降差,能够有 效地减少桥头跳车现象。在桥台与路堤之间设置排水设 施,如排水沟、排水管道等,可以有效地排除积水,减 少水分对地基的侵蚀。通过将土工合成材料铺设在路堤 表面或内部, 能够提高路堤的承载力和稳定性, 减少沉 降的发生,从而减少桥头跳车现象。在桥台两侧设置反 压护道也是一种常见的处理方法。通过反压护道增加了 路堤的稳定性,减轻了地基的压力,减少了桥头跳车现 象的发生。在具体工程实践中应根据实际情况选择合适 的处理方法, 并加强施工管理和监测工作, 确保处理效 果和质量。

结语

道路与桥梁作为促进经济社会发展的重大基础设施工程,但在道路施工过程中也出现了不少的技术难题和施工质量问题,因此施工人员必须在建设过程中提高自我意识,做好对道路施工过程的监督管理工作,并进一步汲取管理成功经验,不断创新技术,为道路和桥梁的施工质量提供经验和参考。

参考文献

[1]刘育富.道路桥梁工程的常见病害及施工处理技术 分析[J].散装水泥, 2022, (05):136-138+141.

[2]王宏伟,尤秀鑫,韩岭.道路与桥梁工程的常见病害及处理技术研究[J].运输经理世界,2022,(26):137-139.

[3] 窦永丽. 道路与桥梁工程的常见病害与处理技术研究[J]. 四川建材, 2022, 48(07):135-136.