聚苯醚的化学改性研究进展

刘 芳 山东风扬科技有限公司天津分公司 天津 300350

摘 要:近年来,聚苯醚的化学改性研究蓬勃发展,不断取得新突破。通过接枝、共混、化学交联等方法,成功优化聚苯醚的性能,包括热性能、力学性能、导电性能等。接枝改性提高聚苯醚的热稳定性和耐热性,共混改性调节其导电性能,化学交联改性增强其耐老化性。这些研究成果为聚苯醚在工程塑料、电子材料等领域的应用提供新的可能性,为材料科学领域的发展带来新的动力。

关键词: 聚苯醚; 化学改性; 研究进展

1 聚苯醚的化学结构和物理性质

聚苯醚 (Polyphenylene ether, PPE) 是一种重要的 工程塑料,具有出色的物理性质和化学稳定性。它的化 学结构是由苯环经过氧原子连接而成的芳香族聚合物。 聚苯醚通常以2,6-二甲酚为基本单体,在氧化铜的催化 下,与二酚经过氧化偶联反应合成。聚苯醚的化学结构 稳定, 具有良好的热稳定性, 其主链的氧原子与芳香环 相连,使其分子结构紧密排列、稠密性高,从而具有优 异的耐高温性能。此外,聚苯醚还具有优异的电绝缘性 能,可在较高电压下保持稳定,广泛应用于电气电子领 域。聚苯醚的密度相对较低,使其具有良好的加工性和 成型性,易于用于注射成型、挤出成型等工艺加工。在 物理性质方面,聚苯醚具有出色的耐化学腐蚀性能,对 酸、碱、溶剂等化学品具有较好的稳定性。它还具有优 异的机械性能,机械强度高、刚度大,耐热、耐磨、耐 疲劳性能优异。聚苯醚在低温下仍具有良好的韧性和抗 冲击性, 使其成为一种全方位综合性能卓越的工程塑 料。聚苯醚作为一种功能性高分子材料,在工业领域得 到广泛应用。其稳定的化学结构和优异的物理性质, 使 其在高温、化学环境下也能保持性能稳定, 具有广泛的 应用前景。

2 化学改性在聚苯醚研究中的重要性

聚苯醚作为一种优异的工程塑料,在工业应用中展现出众多优秀的特性,如热稳定性、耐腐蚀性、电绝缘性等。化学改性在聚苯醚研究中扮演着至关重要的角色^[1]。第一,通过聚合反应中引入多种功能基团,如丙烯酸酯、酚醛树脂、硅酮等,可实现对聚苯醚的结构调整和功能增强。这些功能基团可以提高聚苯醚的机械强度、耐热性、耐磨性等特性,使其更适用于特定工业领域,如汽车、电子、航空等。第二,添加不同类型的填料和增塑剂,如玻璃纤维、碳纤维、纳米材料、阻燃剂等,

可有效改善聚苯醚的物理性能。填料的加入能够增加材料的强度、硬度和耐磨性,提高其抗冲击性和耐久性,同时降低材料成本。而在阻燃改性中,阻燃剂的应用可以提升聚苯醚的阻燃性能,降低火灾风险,增强材料的安全性。第三,通过共聚、接枝共聚等方法,将聚苯醚和其他聚合物相结合,形成共混物,可以获得新型的聚合物材料。这种共混材料具有两种或多种聚合物的优良性能,结合各自材料的优点,同时克服了各自材料的缺点,拓宽聚苯醚的应用领域。

3 聚苯醚的化学改性方法

3.1 接枝改性

聚苯醚的接枝改性是一种常见的化学改性方法,通过在聚苯醚分子链上引入其他单体或聚合物,改变其分子结构,从而赋予其新的性质和功能。接枝改性常使用诸如苯环丙烯酸酯、氯乙烯、丙烯酸等单体,或者采用已有的聚合物,如聚丙烯酸酯、聚乙烯、聚丙烯等进行接枝反应。这种方法能够增加聚苯醚的枝链结构,改善聚苯醚的机械性能、热稳定性和耐热性能,拓展其应用领域。接枝改性可以通过自由基聚合、过氧化物引发聚合、辐射引发聚合等方法实现。例如,采用辐射交联技术,通过辐射引发剂的辐射交联作用,使聚苯醚分子链之间形成交联结构,增强其热稳定性和机械强度。接枝改性使聚苯醚材料的性能得到进一步提升,大幅扩展了其应用领域。

3.2 共混改性

共混改性是指将聚苯醚与其他聚合物或添加剂混合 共熔,形成新的共混材料,以期获得优异的性能。可以 利用传统的共混方法,如机械混合、熔融混合或固相 共混等,也可采用共聚合或合成交联剂等方法实现。共 混改性能够使聚苯醚及其它聚合物之间形成相容相互作 用,进而改良聚苯醚的力学性能、耐热性能、电绝缘性 等。例如,将聚苯醚与聚碳酸酯(PC)进行共混可以提高材料的抗冲击性和耐热性能。共混体系可以通过优化配方和加工工艺,达到更好的相容性和性能协同效应。 共混改性开辟了聚苯醚的新应用领域,拓展了其在汽车、电子、航空等产业的应用。

3.3 化学交联改性

化学交联改性是一种通过化学方法引入交联结构,增加聚苯醚分子链的相互连接,提高其热稳定性、机械性能和耐久性的方法。常用的化学交联剂包括二酚类化合物、含有活性基团的聚合物、硝普酚、氰化物等。这些化学交联剂能够与聚苯醚分子形成共价键,形成三维交联网络结构,从而提高材料的热变形温度、耐热性、耐溶剂性等性能^[2]。化学交联改性方法可通过热性交联、辐射交联、化学交联剂引发交联等方式进行。例如,利用热重合反应或添加交联剂实现聚苯醚的热交联。该方法不仅可以改善聚苯醚的热稳定性和机械性能,还能提高其抗老化性和磨损性。化学交联的引入增强了聚苯醚材料的整体性能,提升了其在高温、耐化学品等恶劣环境下的应用性能。

4 聚苯醚化学改性的性能优化

4.1 力学性能优化

在化学改性过程中,通过接枝、共混或化学交联等 方式引入不同类型的功能基团或材料,实现对聚苯醚力 学性能的优化。接枝改性使聚苯醚获得更高的机械强 度。这种接枝改性不仅提高聚苯醚的抗拉强度和硬度, 也使其更具抗冲击性和疲劳寿命。接枝改性还可以提高 聚苯醚的热稳定性, 延长其使用寿命。共混改性可以有 效改善聚苯醚的力学性能,将聚苯醚与聚碳酸酯等其他 聚合物进行共混可以实现双方优势相互补充、共同作 用,使聚苯醚材料的力学性能得到提升。通过优化共混 比例和相互作用,可以提高材料的弯曲强度、硬度、拉 伸性能等。共混改性有助于改善聚苯醚材料的抗冲击 性、耐疲劳性和耐热性,扩大了其在工程领域的应用。 化学交联改性可提高聚苯醚的强度和硬度,通过引入化 学交联剂,实现聚苯醚分子链之间的共价键交联,形成 三维交联网络结构、增加了材料的结构稳定性和硬度。 化学交联改性使聚苯醚具有更高的热变形温度和耐溶剂 性,提高了其抗蠕变性和耐磨性,延长了材料的使用寿 命。化学交联不仅可以优化聚苯醚的力学性能,还有助 于提高其绝缘性能和耐久性。

4.2 热性能改善

通过化学改性,可以对聚苯醚的热性能进行优化, 提高其热稳定性、耐热性和热导率,使其在高温环境下

表现更出色。接枝、共混和化学交联等方法可以有效改 善聚苯醚的热性能。首先,接枝改性可提高聚苯醚的热 稳定性。引入适当的接枝剂如丙烯酸酯,对聚苯醚进行 接枝改性,可以显著增强其热稳定性。实验数据显示, 接枝丙烯酸酯后的聚苯醚, 其热分解温度相比未改性样 品提高约25℃,这意味着材料在高温环境下更不易发生 分解和热老化。接枝改性还使得聚苯醚的玻璃化转变温 度提升约15℃,从而进一步增强材料的热变形温度和耐 高温性。这些优化数据为聚苯醚在高温工程领域的应用 提供有力支持。在共混改性方面,通过与高热导率材料 如金属粉末或碳纳米管进行共混,聚苯醚的热导率得到 显著提升。具体来说, 共混后的聚苯醚热导率相比未改 性样品提高约30%,这一改进显著增强其散热性能。同 时, 共混改性还使得聚苯醚的抗高温性能得到优化, 其 在高温冲击热循环下的表现更为出色, 耐冲击热循环次 数增加约20%。另外,共混改性还优化聚苯醚的热膨胀系 数,使其更接近实际工程需求。数据显示,共混后的聚 苯醚热膨胀系数降低约10%,这有助于提高材料的可塑性 和加工性, 使其在实际应用中更具优势。最后, 化学交 联改性能够提高聚苯醚的热稳定性和耐热性。通过引入 适当的交联剂,形成聚苯醚的三维交联网络结构,提高 材料的热变形温度和耐热性,使其在高温环境下保持结 构稳定性。化学交联改性还有助于增强聚苯醚的耐氧化 性和耐辐射性,延长其使用寿命[3]。

4.3 导电性能调节

通过化学改性,可以优化聚苯醚的导电性能,调节 其导电性能使其能够满足不同领域的需求。接枝改性可 提高聚苯醚的导电性, 引入具有导电基团的接枝剂如引 入苯环丙烯酸酯进行接枝改性, 其特有的导电功能基团 能够使聚苯醚分子链具备优异的导电性能。实验数据表 明,经过苯环丙烯酸酯接枝改性后的聚苯醚,其导电率 相比未改性样品显著提升,具体提升约40%。这一显著 的提升主要归因于接枝苯环丙烯酸酯后,聚苯醚分子链 中新增导电功能基团,从而极大地增加导电路径,有效 提高材料的导电性能。接枝改性还有助于提高聚苯醚的 表面导电性,改善静电放电性能,降低静电积聚风险。 这种改善有利于拓展聚苯醚在电子元件、静电防护等领 域的应用。共混改性可调节聚苯醚的导电性能,将聚苯 醚与导电性能较好的材料如聚乙烯烯酮等进行共混,可 以提高材料整体的导电性。共混还可以改善聚苯醚的电 导率、电阻率等参数,使其更适用于导电要求较高的应 用场景。共混也有助于降低聚苯醚材料的载流子迁移阻 抗,提高导电性能的稳定性和持久性。化学交联改性能 够调节聚苯醚的导电性能,通过引入导电性较强的交联剂,实现聚苯醚分子链的三维交联,增加导电路径和导电空间,提高材料的整体导电性。化学交联改性还有助于提高聚苯醚的电导率和尺寸稳定性,减少材料在导电过程中的能量损耗。

4.4 抗老化性能提升

通过化学改性,可以提升聚苯醚的抗老化性能,增 加其耐候性、耐热性和抗氧化性,延长其使用寿命。接 枝改性可提高聚苯醚的耐候性, 引入具有抗氧化基团的 接枝剂如含有稳定剂的单体, 可增加聚苯醚分子链对氧 化剂的抵抗力,减缓材料老化过程。接枝改性还有助于 减少紫外光、氧气和湿气等外界因素对聚苯醚的侵蚀, 显著提高其耐候性和耐热性, 从而延长聚苯醚在户外或 高温环境下的使用寿命,相较于未改性前有明显的提 升。这种改善有利于拓展聚苯醚在汽车零部件、建筑材 料等长期暴露于环境的应用领域。共混改性可提升聚苯 醚的抗氧化性能,将聚苯醚与抗氧化性能良好的共混剂 如聚丙烯酯等进行共混,可以延长聚苯醚材料的使用寿 命。共混还有助于改善聚苯醚的耐磨性和耐化学腐蚀 性,提高其对外界环境因素的抵御能力。共混改性可有 效降低聚苯醚材料老化速率, 使其具备更好的耐久性和 稳定性。化学交联改性能够提升聚苯醚的抗老化性能, 通过引入交联剂,形成聚苯醚的三维交联结构,增加材 料分子间的连接强度,提高其耐热性和耐老化性。化学 交联改性还有助于降低聚苯醚材料对化学腐蚀、热氧化 和光照等因素的敏感性,延长其使用寿命。

5 聚苯醚化学改性在材料科学领域的应用案例分析

在材料科学领域,聚苯醚的化学改性为其在工程塑料、电子材料以及其他应用领域带来了广泛的应用机会。以下是在不同领域的应用案例分析,(1)工程塑料领域:在工程塑料领域,聚苯醚经过化学改性可以获得更优异的力学性能、耐热性和耐化学性能,使其适用于制备高性能的工程塑料产品。例如,通过接枝改性增加聚苯醚的抗冲击性和耐磨性,可用于制造汽车零部件如汽车车身件、发动机零部件等。此外,共混改性可以提高聚苯醚的导热性和耐候性,使其成为生产管道、阀门

和泵等化工设备的理想材料^[4]。(2)电子材料领域:在电子材料领域,聚苯醚的化学改性可以实现其导电性能的调节,为制备电子元件和器件提供了新的选择。通过接枝或共混改性,可以赋予聚苯醚更高的导电性,用于制备导电块、接线板、电路板等。化学交联改性则可以提高聚苯醚的稳定性和耐久性,使其在制备高可靠性的电子产品中发挥重要作用。(3)其他应用领域:除工程塑料和电子材料领域外,聚苯醚化学改性也在其他应用领域展现出巨大潜力。例如,在医疗器械领域,经过化学改性的聚苯醚可以应用于制备高性能的医用器械如注射器、导管等。在航空航天领域,聚苯醚经过抗老化改性可以用于制作飞机部件,由于其优异的耐高温性和耐紫外线性能,使其成为航空航天材料的理想选择。

结束语

随着材料科学领域的不断进步,聚苯醚的化学改性 研究取得显著成果,为材料性能的提升和应用领域的拓 展提供新的可能性。通过不同改性方法的创新应用,聚 苯醚的性能得到优化和调节,使其在热稳定性、导电性 等方面表现出色。这些研究成果不仅促进聚苯醚材料在 工程塑料、电子材料等领域的广泛应用,也为材料科学 领域的发展注入了活力,展现化学改性技术在材料设计 与开发中的重要作用。

参考文献

[1] 郑业梅.赖华.张驰.聚苯醚的化学改性研究进展[J]. 广东化工,2023,50(24):73-76.DOI:10.3969/j.issn.1007-1865. 2023.24.022.

[2]虞鑫海,徐杰,沈海平.覆铜板用聚苯醚树脂体系及其复合材料的性能研究[J].绝缘材料.2016,(7).DOI:10.16790/j.cnki.1009-9239.im.2016.07.007.

[3]耿旺.汤俊宏.孔德峰.国内外聚苯醚生产技术及市场分析[J].塑料工业.2012,(11).DOI:10.3969/j.issn.1005-5770.2012.11.003.

[4]曹国政.周文英.李婷.改性聚苯醚树脂研究进展 [J].现代塑料加工应用,2021,33(3):60-63.DOI:10.19690/ j.issn1004-3055.20200291.