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Abstract: Porous carbon materials have been applied in many fields for their advanced physical 
features. Using biomass waste material as the activated carbon (AC) source is of importance to keep 
the sustainable environment. The CO2 activation and KOH activation were adopted to create AC with 
the flexible porous structure and the former caused low surface area but with high nitrogen content of 
AC. The reversed results were formed with the KOH activation. The differences on specific surface 
area and nitrogen groups distribution were investigated by nitrogen sorption isotherm and X-ray 
photoluminescence spectroscopy. Their porous structure and framework were characterized with 
transmission electron microscope and Raman spectra. Electrochemical performance was evaluated 
by supercapacitance and oxygen evolution reaction (OER). Comparing to the CO2 activation, KOH 
activation improved surface area of AC and more functional groups on the carbon surface, which led to 
the enhancement of the electroactivity.
Keywords: Activated carbon; Porous structure; Surface feature; Supercapacitance; OER
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1. Introduction

Facing the double pressure of environment 
and energy, advanced research on catalysts 
for energy storage and conversion, such as 

fuel cells[1], metal air batteries[2-4], lithium sulfur 
batteries[5], supercapacitor[6-8], and water splitting[9] 
have been developed. Carbon materials are free from 
the constraints of precious metal materials (Pt, Ru, 
Au) and possess the long life and stable activity[10-12]. 
Nowadays, one-, two- or three-dimensional carbon 
materials from biomass have been used as functional 
catalysts[13-16]. Among them the hierarchically porous 
activated carbon (AC) has been attracted much 
attention with high surface area and pore volume[2-4]. 
But two configurations of sp2-C and sp3-C in the 
carbon skeleton often take the weak activity in multi-
electrons catalysis. ACs with nitrogen doping could 
facilitate ionic diffusion and mass transfer[6-8], thus high 
energy and power density of supercapacitor can be 
supported[17,18].

Large surface area of AC relates to the abundant 
micropores, which may fully infiltrate electrolyte to 
improve the capacitance[19-21]. Their efficient microporous 
channels also help the air participate in oxygen reduction 
reaction (ORR)[22]. Meanwhile, the heteroatoms from 
the biomass could readjust the charge distribution in AC 
matrix, then promote electroactivity[23,24]. Therefore, an 
appropriate activation process for both enhancing surface 
area of AC and balancing the heteroatoms doping is 
expected.

In general, the technique for creating AC with 
desirable feature relates to the physical activation and 
the chemical activation. Through KOH activation, 
the high surface area of AC with defects could be 
created[25-27], but reducing the amount of KOH is 
necessary to alleviate the corrosion of equipment[19,28,29]. 
Not like the chemical activation, CO2 activation is a 
green way to construct AC with micropores through 
adjusting the flow rate of CO2 gas, temperature and 
reaction time[30-32]. But the yield of AC could decrease 
during the CO2 consumption, and underdeveloped 
porous structure causes low specific surface area (SSA) 
of AC[31,33-34]. Some reports had constructed AC by 
combining CO2 activation with KOH activation[35,36], 
but the carbon source and activation protocol leave a 
big unknown to the features of products.

Herein, we prepared nitrogen doped AC from cotton 

stalk through the KOH or CO2 activation. The AC 
derived from KOH activation brought large SSA and 
pore volume. CO2 activation led to a low SSA but a 
high nitrogen content of AC. The X-ray photoelectron 
spectroscopy (XPS) investigation suggested the species 
of nitrogen atoms. Combined with the physical features 
of AC, the electrochemical activities were improved in 
supercapacitor and oxygen evolution reaction (OER) 
procedure.

2. Experimental details
All the chemicals used were purchased from Sigma 
Aldrich Co. Ltd without any pretreatment.

2.1 Synthesis of AC Catalysts
The cotton stalk was provided from Xinjiang 
(Hongruida Fiber Co. Ltd.) and cleaned with water to 
remove the surface dust. Then the cleaned material 
was soaked in 2 mol·L-1 of acetic acid solution for 
24 h, and washed with deionized water till to a neutral 
pH. After drying at 80 °C overnight, the carbonization 
procedure was carried out, the temperature was raised 
to 500 °C for 2 h in a tube furnace at a heating rate of 
10 °C·min-1 and nitrogen flow of 60 mL·min-1. Then 
the carbonized AC was used for activation.

2.1.1 CO2 activation
2 g of carbonized AC was heated to 800 °C with a 
heating rate (10 °C·min-1) under N2 gas flow (60 
mL·min-1). CO2 gas was flowed into the tube furnace 
for 2 h and with a flow rate of 150 mL·min-1. After 
cooling down the sample was washed with 1 mol·L-1 
of HCl and deionized water until to a neutral pH, finally 
the sample was collected after drying and named pAC.

2.1.2 KOH activation
The carbonized AC was mixed with two mass ratio of 
KOH, 20 mL of distilled water was added and stirred 
overnight for 12 h at room temperature, then the mixture 
was activated in a tube furnace at 800 °C for 2 h with 
a heating rate of 10 °C·min-1 and nitrogen flow of 60 
mL·min-1. Then the sample was washed as mentioned 
above. Finally the collected carbon was named cAC.

2.2 Characterizations
Nitrogen adsorption-desorption isotherms were measured 
by a Quantachrome Autosorb-1 MP sorption Analyzer at 
liquid-N2 temperature (-196 ºC). The surface areas were 
calculated by Brunauer-Emmett-Teller (BET) method. The 
pore size distribution was deduced by Non-Local Density 
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Functional Theory (NLDFT)[37]. The JSM-6490LV 
scanning electron microscope (SEM) was used to observe 
the surface morphology. The transmission electron 
microscope (TEM JEM 1010) recorded the microstructure 
of samples. Raman scattering spectra were recorded by 
Renishaw InVia with 532 nm excitation light source in the 
range of 3500-400 cm-1. Three times of scanning was set 
and the spectral resolution was 0.1 cm-1. The XPS analysis 
to the carbon surface chemistry was performed by the 
physical electronics spectrometer (Thermo ESCALAB 
250). The sample chamber was evacuated to 5.2×10-9 
mbar and irradiated by a monochromatic Al Kα radiation 
(150 W, 15 kV, and 1486.6 eV). High resolution spectra 
were recorded at a fixed angle of 90º with respect to 
the sample surface. The spectrometer energy scale was 
calibrated using C1s (284.6 eV).

2.3 Working Electrode Tests 

2.3.1 Supercapacitor
Nickel foam was selected as the working electrode 
collector with 1 cm2 of active area. Ethanol was 
used as the dispersible solvent. AC was mixed with 
acetylene black and polytetrafluoroethylene (60 wt%) 
with the mass ratio of 75:20:5, and pressed under 20 
MPa pressure for 30 s to form an electrode. The mass 
loading of AC was about 5 mg. Before test the work 
electrode was fully infiltrated in 6 mol·L-1 of KOH 
electrolyte for 10 h. The galvanostatic discharge-charge 
cycling tests were measured on LAND testing system.

Cyclic voltammetry (CV) and electrochemical 
impedance spectroscopy (EIS) were investigated by 
an IM6&ZENNIUM electrochemical workstation, 
measured in a three electrode system and the electrolyte 
was 6 mol·L-1 of KOH. Hg/HgO (1 mol·L-1 of 
KOH as internal solution) was chosen as a reference 
electrode and the counter electrode was a platinum 
electrode[38]. EIS was recorded at open circuit voltage, 
the frequency was set from 10 mHz to 100 kHz under 
disturbance voltage of 5 mV.

In a three electrode system, the capacitance value 
of ACs was calculated following the equation (1). The 
specific capacitance of the two electrode ACs was 
obtained with the equation (2). The energy density (E) 
and power density (P) were derived from the equation 
(3) and (4):

  (1)

  (2)

  (3)

  (4)

Where the C is the specific capacitance (F·g-1), 
I is the electric current (A), ∆t is the discharge time 
(s), m is the mass of active carbon (g), ∆V is potential 
difference (V), E is energy density (Wh·kg-1), P is 
power density (W·kg-1), Δt is discharge time (s). The 
mass (m) in equation (2) is average mass of symmetric 
electrodes (g), and the C in equation (3) is calculated 
from the two-electrode system.

2.3.2 OER
The electrochemical tests of the samples were recorded at 
room temperature under a three electrode alkaline system. 
All electrochemical data was collected under steady-state 
conditions by cyclic scanning. 1 mol·L-1 of KOH (pH  = 
14) was set as the electrolyte, An electrode Hg/HgO (1 
mol·L-1 of KOH as internal solution) and a platinum 
electrode were used as the reference and counter electrode, 
respectively[39]. The working electrode was prepared by 
the mixture of AC, Acetylene black and Polyvinylidene 
fluoride (PVDF HSV900) binder with a mass ratio of 8:1:1, 
which was then dispersed in N-methyl-2-pyrrolidinone 
(NMP) through grinding and pasted onto the nickel foam 
(current collector) with the total surface area of 2×1 cm2, 
the loading mass of AC was about 10 mg. Linear sweep 
voltammetry (LSV) was tested at 5 mV·s-1 of sweep 
rate. The electric double layer capacitance was determined 
through the CV at the voltage window ranging from 0.925 
V to 0.975 V vs. Reversible Hydrogen Electrode (RHE). 
The potential conversion was following the equation: 
E(RHE)=E (Hg/HgO) + 0.059 pH + 0.098. The stability of the 
catalysts in OER was tested by chronoamperometry at 
the current density of 10 mA·cm-2. Electrochemical 
impedance was collected at a potential of 1.63 V vs. RHE 
with the frequency range from 10 mHz to 100 kHz under 
the disturbance voltage of 5 mV.

3. Results and Discussion
3.1 Physical Properties of the Material
The surface area, pore volume and pore distribution 
of pAC and cAC have been summarized by N2 
adsorption-desorption measurement. In Figure 1a type 
I isotherms appear for pAC and cAC with a steep slope 



Advanced Materials Science and Technology

at low relative pressures (p/p0 < 0.1)[39]. cAC exhibits a 
SBET of 1555 m2·g-1 with the Vtotal of 0.921 cm3·g-1. 
While, pAC has a SBET of 538 m2·g-1 with the Vtotal of 
0.360 cm3·g-1. The pore size distribution calculated by 

NLDFT method is at around 1 nm in Figure 1b. The 
results indicate that the KOH activation with etching 
reaction could provide a high surface area and large 
pore volume[26,40,41].

Figure 1. (a) Nitrogen adsorption-desorption isotherms; (b) Pore size distributions of cAC and pAC

The Raman spectra could be used to identify the 
disorder of carbon structure according to the intensity 
ratio of D band to G band (ID/IG) of which the D 
band around 1350 cm-1 relates to sp3 carbon structure 
and the G band at 1580 cm-1 corresponds to the sp2 
bonded carbon[42]. The ID/IG values of cAC and pAC 
are 1.07 and 0.98, respectively as shown in Figure S1, 
confirming that more defects in the carbon framework 
of cAC than that of pAC.

The morphology of pAC and cAC was observed 

by the SEM and TEM as represented in Figure 2a-
2d. The cAC displays less compact morphology than 
pAC. We can clearly observe the macropores at about 
500 nm in cAC (Figure 2a). The macropores of pAC 
are about 1 μm and 240 nm (Figure 2b). TEM images 
of cAC and pAC represent the micropores at around 1 
nm with uniform pore structure in Figure 2c and 2d. 
The wormhole like pores exist in the sample, which is 
beneficial to electrolyte infiltration and charge transfer 
process[43].

Figure 2. (a-b) SEM images; (c-d) TEM image of cAC and pAC
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The surface chemistry of cAC and pAC was 
investigated by XPS. As shown in Figure S2, the 
content of C1s, N1s and O1s in cAC varies from that 
of pAC. The C1s spectra of the samples in Figure S3 
could be deconvoluted into four bonding configurations, 
C=C, CO/C–N, C=O/C=N and O–C=O, at the binding 
energy around 284.6, 285.5, 286.8 and 289.1 eV, 
respectively[3,44]. The O1s spectra of cAC and pAC are 
divided into four peaks at 531.5, 532.5, 533.7, 534.7, 
corresponding to the group of O=C, O–C, O–N, and 
water or chemisorbed O2/CO2

[26] as shown in Figure 3a 
and 3b. The surface content of N is 2.15 at% and 3.53 
at% for cAC and pAC, respectively. N1s represents 

four groups of pyridine-N, pyrrole-N, graphitic-N 
and oxidized N at the peak of 398.7, 399.8, 401.5 and 
402.9 eV, in Figure 3c and 3d, respectively[45]. High 
content of pyrrole-N (1.55 at%) is keped during KOH 
activation, inversely graphitic-N (2.03 at%) is main 
in pAC by CO2 activation. All peaks information has 
been summarized in Table S1. Cao et al.[33] reported 
that AC by CO2 activation possessed 2.5 at% of N and 
5.8 at% of S, which was higher than the AC (2.17 at% 
N and 0.85 at% S) by KOH activation. It is clear that 
the physical activation avoid over consuming carbon 
atoms, benefiting the heteroatoms remain. 

 

Figure 3. XPS high-resolution scans of cAC and pAC. O1s (a-b), N1s (c-d). The spectra were obtained by calibration based on 
C1s peak at 284.6 eV

3.2 Chemical Properties of the Material

3.2.1 Supercapacitor
Three electrode system in 6 mol·L-1 of KOH solution 
was adopted to evaluate supercapacitance of cAC and 
pAC. Figure S4a and S4b display the CV curves 
at the voltage range from -1 V to 0 V vs. Hg/HgO, 
using a scan rate range from 5 to 100 mV·s- 1. The 
CV curve is in approximate rectangle shape without 
linear polarization, indicating the feature of double-
layer capacitor[46]. Galvanostatic charge-discharge 

(GCD) curves of cAC and pAC in Figure S4c and 
S4d were collected at different current densities. The 
cAC exhibits the capacitance of 286, 232, 200, 192 and 
185 F·g-1 at 0.5, 1, 2, 3 and 5 A·g-1, respectively. 
The specific capacitance pAC is 163 F·g-1 at current 
density of 0.5 A·g-1, indicating that rich pore of the 
sample is good for electron transfer[47].

In a two-electrode system the GCD tests was 
recorded in 6 mol·L-1 of KOH. The calculated 
capacitance of pAC and cAC is 122 F·g-1 (Figure 
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4a) and 178 F·g-1 at the current density of 1 A·g- 1 
(Figure 4b). The ragone plot of Figure 4c reveals 
that the cAC has a high energy of 24 Wh·kg-1 and 
power density of 970 W·kg-1, which is better than 
the AC made from pomelo peel (9.4 Wh·kg-1)[48] 
and the AC from soybean (12.5 Wh·kg-1 at a power 

density of 450 W·kg-1)[49]. Cyclic stability of cAC and 
pAC was tested by GCD test at a current density of 1 
A·g-1. Figure S4e shows that cAC electrode has the 
capacitance retention 74% after 1000 cycles GCD test, 
and the nearly capacitance retention 73% in cAC.

    

Figure 4. (a) and (b) Galvanostatic charge-discharge (GCD) curves of cAC and pAC in two- electrode system in 6 M KOH 
electrolyte; (c) The related ragone plot; (d) The EIS was recorded at open circuit voltage in 6 M KOH electrolyte by three 

electrode system; (inset) the enlarged EIS spectra at high frequency

The EIS was recorded at the open circuit voltage in 
Figure 4d. The curves of cAC and pAC display a semi 
arc in the high frequency region and a Warburg line in 
the low frequency region, corresponding to the dynamic 
processes of the charge transfer and the ions diffusion 
from electrolyte into the electrode[50]. The small 
semicircle diameter indicates a low electrical resistance 
and good electrical conductivity. The Warburg line is 
close to 90°, indicating the ideal capacitor behavior and 
the fast ion diffusion rate[51,52].

Benefited to the micropores, AC from wood fibers 
represented a high specific capacitance of 345 F· g-1 at 
0.5 A·g-1, of which the surface area was 1807 m2·g- 1[21]. 
AC from waste bones had a 1260 m2·g-1 of SSA, and a 
capacitance of 234 F·g-1 was obtained at 1 A·g-1 in 6 
M KOH[25]. AC derived from natural casings displayed 
a specific capacitance of 190 F·g-1 at 1 A· g-1 and 

possessed a surface area of 2383 m2·g-1[27]. Thus KOH 
activation is helpful to get a high capacitance. AC obtained 
in two mass ratio of KOH displayed a capacitance of 156 
F·g-1 in 1 mol·L-1 of TEABF4/AN electrolyte. The 
surface area was 3386 m2·g-1 accompany with 0.58 at% 
of nitrogen. As a comparison, 0.5 mass ratio of KOH 
promoted AC a surface area of 768 m2·g-1 and 5.12 
at% nitrogen. Its capacitance was only 60 F· g-1[19]. By 
CO2 activation, 1.81 at% nitrogen doped AC from date 
fruit with SSA 464 m2·g-1 showed a capacitance of 103 
F·g-1 at 1 mV·s-1 in 6 mol·L-1 of KOH[34]. 2.25 at% 
nitrogen doped carbon aerogel with the SSA of 1415 
m2·g-1 from banana flesh achieved a capacitance of 179 
F· g-1 at 1A·g-1[31]. What’s more, the usage of KOH 
does not need a high ratio. The cAC has a prominent 
capacitance than the AC from Konjaku flour (216 F·g-1), 
even through five mass ratio KOH was used[47]. By testing 
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the electrochemical feature of rice husk-based hierarchical 
porous carbon, Chen et al.[53] proposed that a suitable pore 
size distribution is essential for the high capacitance and 
excellent rate capability. 

3.2.2 The OER test
The OER activity of the cAC was evaluated by LSV 
curves at a scan rate of 5 mV·s-1. Figure 5a suggests 
that cAC exhibits the lowest onset potential, which 
is even lower than the IrO2. Especially, at the current 
density of 10 mA·cm-2, the overpotential of cAC, 
pAC and IrO2 is 230, 366 and 290 mV, respectively. 
The Tafel slop reflects a specific rate of determining 
steps for the four electron transfer process in the 
OER, according to the convert formula η=a+blogJ 
(where a and b are the constant number in the linear 
curve) [25]. As shown in Figure 5b, the cAC and pAC 
displays the slope of 297 mV·s-1 and 339 mV· s-1, 

reflecting that the adsorption of OH- ion is the rate-
determining step in OER[54,55]. The OER stability is 
reflected by the chronoamperometry method at the 
current density of 10mA·cm-2. The plot in Figure 
5c represents the voltage changing in the constant 
current discharge, the voltage rises first and then the 
potential has the fluctuation of 100 mV within 30,000 
s, the clear transparent electrolyte gradually turns into 
light brown. The similar results has been observed in 
activated carbon cloth[56]. The electrochemical double-
layer capacitance (Cdl) derived from the CV tests is 
under different scans (2, 4, 6, 8, and 10 mV· s-1) at 
the voltage of 0.955 V (vs. RHE) in Figure S5. The 
Cdl value of cAC and pAC is 275 mF·cm-2 and 119 
mF·cm-2, respectivley, which confirms that the cAC 
is more active than pAC (Figure 5 inset)[57]. For OER 
process those active sites lowers the overpotential, 
leading to the cAC better than the pAC.

Figure 5. OER performance (a) polarization curves of cAC and pAC at a scan rate of 5 mV/s; (b) Tafel plots; (c) the 
chronoamperometry was recorded at the current density of 10 mA/cm2, and the value of calculated Cdl are inserted; (d) EIS of 

the ACs recorded at 1.63 V vs. RHE

To observe the surface charge motion of the electrode 
during OER process, EIS of the ACs samples were 
measured at 1.63 V vs. RHE in 1 mol·L-1 of KOH. 
As shown in Figure 5d, cAC and pAC present the two 
semicircles from 10 mHz to 100 kHz, corresponding 

to the charge transfer process at high frequency region 
and the Gerischer impedance[58] at low frequency 
region, respectively. The small semicircle relates to the 
high conductivity. It is clear that cAC is more active 
than the pAC[59].



Advanced Materials Science and Technology

The low overpotential of cAC could be ascribed to 
its high surface area and functional groups. ZnO@
carbon microbeads displayed improved ethanol 
electrooxidation with a low onset potential 0.4 V (vs. 
Ag/AgCl)[60]. The spent coffee ground was used as 
the carbon source and ZnCl2 was the active agent. 
On the contrary the non-activated carbon from spent 
coffee ground had no any activity to the ethanol 
electrooxidation. It is clear that the activation is 
important to enhance the surface area and enrich 
the surface functional group. Although the physical 
activation could keep more functional groups on 
the carbon surface, the limited surface area and 
pore volume are the fatal weakness to achieve the 
requirement of electro-oxidation. The cAC obtained 
with KOH activation possesses the advantage of high 
surface, large pore volume, and rich pyrolle-N, those 
are responsible to promote the OER.

4. Conclusion
The cotton stalk is used to prepare the AC with 
physical and chemical activation method, leading to a 
special feature on the carbon framework. High nitrogen 
content exists in the CO2 activated carbon pAC with 
3.53 at%. Although KOH activated carbon cAC 
displays a low nitrogen content (2.15 at%), it possesses 
a high surface area with 1555 m2·g-1, that promots 
an interesting activity in supercapacitor and OER 
reaction. The cAC packed supercapacitor possesses 
a high capacitance and the OER performance of cAC 
shows a low overpotential of 230 mV vs. RHE at 10 
mA·cm-2 owning to the existence of rich micropores 
and surface functional groups. XPS analysis reveals 
that the pyrrole-N is formed during the KOH 
activation. Combining with high specific surface area 
AC, the carbon by KOH activation would be actively 
responsible to the application of renewable energy 
conversion and storage.
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Supporting Information
Table S1. The summary of quantitative elements and the fitting peak information of the cAC and pAC by XPS

Bond assignment Binding energy (eV) cAC (at%) pAC (at%)
C1s 87.46 85.17

C=C sp2 284.6 56.61 56.41
C–O (phenolic, alcoholic, ether), C–N (carbon-

nitrogen structures) 285.5 11.46 15.07

O–C=O (carboxyl or ester) 286.8 9.74 8.57
π→π*, π-electrons in aromatic rings 289.1 9.65 5.12

O1s 10.39 11.30
O=C (in carboxyl/carbonyl) 531.5 4.35 3.93

O–C (in phenol/epoxy) 532.5 3.63 4.05
N–O 533.7 2.07 2.67

Water or chemisorbed O2, CO2 534.7 0.34 0.65
N1s 2.15 3.53

pyridine-N 398.7 0.42 0.54
pyrrole-N 399.8 1.55 0.87

graphitic-N 401.5 0.14 2.03
pyridine N+–O- 402.9 0.04 0.09

Figure S1. The Raman spectrum of the samples

Figure S2. The survey spectrum of the samples exhibit the typical peaks C, N and O elements
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Figure S3. The C1s spectra of cAC (a) and pAC (b). The spectra were obtained by calibration based on C1s peak at 284.6 eV

Figure S4. (a) and (b) displayed the cyclic voltammetry (CV) curves of cAC and pAC at three electrode system in 6 M KOH 
electrolyte, using a scan rate range from 5 mV/s to 100 mV/s; (c) and (d) galvanostatic charge-discharge (GCD) curves of cAC 
and pAC were collected at different current densities at three electrode system in 6 M KOH electrolyte; (e) cycle ability of the 

samples by GCD test at a current density of 1 A/g for 1000 cycles in two electrode cell
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Figure S5. The CdI from CV tests were under different scans (2 mV/s, 4 mV/s, 6 mV/s, 8 mV/s, 10 mV/s) at the voltage of 0.955 
V vs. RHE


