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Abstract: Ultrasonic cavitation is a phenomenon that occurs when high-frequency sound waves are introduced 
into a liquid medium, causing the formation and collapse of small bubbles within the liquid. These bubbles 
generate high-energy shock waves that can change the surface of nearby materials, leading to various physical 
and chemical effects. In this review, we briefly summarized the influence of ultrasonic cavitation on the surficial 
properties of metals and some industrial processes, particularly focusing on the effects of surface roughness, 
surface cleaning, and surface activation/modification and surface corrosion. 
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1. Introduction

Ultrasonic cavitation refers to the formation 
and implosion of microscopic bubbles in 
a liquid medium due to the application of 

high-frequency ultrasonic waves. Cavitation occurs 
when the alternating pressure waves of the ultrasound 
create regions of low pressure, causing the liquid 
to undergo rapid expansion and contraction cycles. 
During the expansion phase, small gas, or vapour-
filled voids, known as cavitation bubbles or cavities, 
are formed. When the pressure later increases during 
the contraction phase, these bubbles rapidly collapse or 

implode. The collapses of cavitation bubbles generate 
localized elevated temperatures and pressures, along 
with intense shear forces and shock waves. This 
phenomenon can have several effects, depending on the 
specific application[1].

The surficial properties of materials play a vital 
role in various fields and applications. It is crucial 
to understand and control the surficial properties of 
materials for tailoring their behaviour, improving 
performance, enabling specific functionalities, and 
ensuring compatibility with their intended applications. 
It is an interdisciplinary field that encompasses 
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materials science, chemistry, physics, engineering, and 
various industry-specific domains. Ultrasonic cavitation 
can have various effects on the surficial properties of 
materials depending on the specific parameters of the 
ultrasonic treatment, such as the frequency and power 
of the ultrasound waves, the duration of the treatment, 
and the properties of the material being treated[2-6]. 
Varied materials will show varying responses to 
ultrasonic cavitation, and it's crucial to consider the 
specific application and desired outcome when utilizing 
this technology[7,8]. 

Overall, ultrasonic cavitation can be a versatile tool 
for modifying the surficial properties of materials, and 
its effects can be tailored to specific applications by 
adjusting the treatment parameters. Proper control and 
optimization of ultrasonic parameters are necessary to 
achieve the desired surface effects while minimizing 
any negative consequences. 

This review primarily focuses on summarizing 
the potential effects of ultrasonic cavitation on 
various surficial properties of materials. Specifically, 
it examines the impact of ultrasonic cavitation on 
surface roughness, surface cleaning, surface activation/
modification and surface corrosion. By exploring 
these areas, we aim to provide a comprehensive 
understanding of how ultrasonic cavitation can 
influence the characteristics and behaviour of material 
surfaces, as well as some industrial processes.

2. Mechanism of Ultrasonic Cavitation and 
Collapse Near Solid Surfaces
The mechanism of ultrasonic cavitation near solid 
surfaces involves the nucleation, growth, and collapse 
of bubbles in a liquid medium, with the behaviour of 
the bubbles influenced by the proximity of the solid 
surface. Initially, tiny gas or vapour-filled voids, known 
as nuclei, are present in the liquid. These nuclei can 
be pre-existing gas bubbles or may form due to local 
pressure fluctuations or impurities in the liquid. As 
the high-pressure region of the sound wave passes 
through the liquid, the pressure on the liquid decreases, 
causing the nuclei to expand[9-11]. This expansion 
phase is driven by the low-pressure regions created 
by the sound wave. As the low-pressure region of the 
sound wave passes through, the pressure on the liquid 
increases, causing the expanded nuclei to compress. 
This compression phase is driven by the high-pressure 

regions of the sound wave. With each cycle of the 
sound wave, the nuclei undergo repeated expansion and 
compression, leading to the growth of the cavitation 
bubbles[12]. The bubbles can reach a size several times 
larger than their initial nuclei (Figure 1). When these 
cavitation bubbles come close to solid surfaces, their 
behaviour can be modified due to the influence of the 
surface. The interaction between the cavitation bubbles 
and the solid surface is influenced by factors such as 
surface roughness, surface energy, and surface tension 
of the liquid. The exact mechanisms of bubble-surface 
interaction are complex and depend on the specific 
conditions[7,13]. Figure 1 summarized the mechanism 
and phenomenology of ultrasonic cavitation. 

 
Figure 1. Summary of ultrasonic cavitation. (a) a bubble 
transfer in a steady state[9]; (b) photograph of a cloud of 

sonoluminescent bubbles[9]; (c) steps of bubble cavitation[14]; 
(d) phenomenology of acoustic cavitation[14]

3. The Effect of Ultrasonic Cavitation on 
Surface of Metals

3.1 Surface Roughness 
Ultrasonic cavitation can cause the formation of 
tiny bubbles in liquids or solid surfaces, which then 
collapse violently, creating intense local pressures and 
temperatures. This can lead to the creation of micro-
features on the surface, resulting in changes in surface 
roughness[15-17]. Ultrasonication is an effective and 
green method to treat metallic surfaces. Simon Verdan 
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etc. reported the ultrasonic treatment on four different 
metals (Al, Ag, Cu and Zn) and the reactor for this 

treatment is shown in Figure 2[18].

 
Figure 2. Reactor scheme (dimensions in mm)[18]

When it comes to aluminum, as the distance 
between the sample and probe increases, the roughness 
significantly decreases, resulting in a less uniform 
treated surface. Conversely, at shorter distances, 
the roughness height is minimal due to the contact 

between the sample and the horn, caused by ultrasound 
vibrations and the initial erosion of the metal surface. 
To achieve a consistently treated surface, the best 
working distance falls within the range of 0.4 mm to 0.6 
mm. The results are displayed in Figure 3.

 

Figure 3. XRD patterns of an Al plate (a) before sonication, (b) after 3 min and (c) after 10 min; (d) scan electron micrographs 
(SEM) of the surface (4min); all sample-probe distance was 0.5 mm[18]
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When subjected to short sonication times, only a 
few impacts are visible on the metal surface. As the 
reaction time increases, these impacts gradually grow 
and multiply, ultimately covering the entire surface, 
creating a hammered appearance due to cavitation. 
SEM observations of the samples revealed the 
emergence of surface roughness after just 1 minute 
of treatment, which intensified with longer sonication 
durations. Surface damage was minimal for noticeably 
short reaction times (less than 1 minute), while it 
became highly uneven for longer durations (over 4 

minutes).
SEM images of Cu, Ag and Zn are shown in Figure 4 

as a comparison. The copper plates' treated surface 
undergoes removal of its natural oxide layer, resulting 
in a reddish appearance lacking a shiny metallic lustre. 
Following a 5-minute ultrasonic treatment, the surface 
remains moderately affected (Rtm = 17.9 μm), and it 
takes approximately 10 minutes of reaction time to 
achieve a level of surface erosion comparable to that 
observed in aluminum, as previously described.

Figure 4. SEM of the surface of Cu plate after (a) 5 min and (b) 10 min of sonication; (c) Ag plate after 10 min; (d) Zn plate 
after 10min; all sample-probe distance was 0.5 mm[18]

In the case of silver plates, the treated surface turns 
white and tarnished after sonication. SEM analysis 
reveals a similar pattern of surface roughness formation 

and evolution as observed in aluminum. After a 
5-minute ultrasonic treatment, a homogeneous erosion 
is observed (Rtm = 13.3 μm), while a 10-minute 



 Vol 5 Issue 1 2023

reaction causes significant cavitation damage to the 
silver surface.

For Zn, the intensities of the (0 0 l) planes increased, 
which corresponds to the maximum density plane for a 
hexagonal structure. 

These results suggest a structural change of the 
metallic surface induced by ultrasounds.

Anisotropic etched silicon is extensively used in 
micro-electro-mechanical systems (MEMS) for bulk 
micromachining[19]. However, traditional silicon etching 
methods typically involve the use of environmentally 
and health-hazardous chemicals[20]. To mitigate the 
negative impact of these chemicals, ultrasonication 
has been introduced to enhance the surface quality of 
silicon during the etching process[21-24]. Additionally, 
the function of ultrasonication for surface roughness 
can be also used for other metals as well, such as 
Titanium[25,26], steel[27,28] and alloy[29-31], among others.

3.2 Surface Cleaning 
Ultrasonic cavitation can be an effective means of 
cleaning surfaces, particularly when combined with a 
cleaning solution. Ultrasonic cavitation can create high-
speed microjets that dislodge and remove contaminants 
and debris from the surface of materials. Ultrasonic 

cavitation can be used to remove contaminants or 
residues from the surface of a material, as the high-
frequency pressure waves cause the formation and 
collapse of microscopic bubbles that generate localized 
pressure and temperature changes, leading to a 
scrubbing effect that dislodges contaminants[32-34]. 

Ultrasound is considered a potential technology in 
improving several processes of the food industry. The 
significant role of ultrasonication is to obtain safer and 
higher quality products than with traditional procedures, 
such as surface cleaning and decontamination, 
microbial and enzymatic inactivation, degassing, 
defoaming, and improvement of mass transfer, among 
others[35-37]. Figure 5 illustrates the successful use of 
devices across various domains in the food processing 
industry. These devices have proven to be effective 
in a multitude of applications, including extraction, 
thawing, maturation, drying, degradation, blanching, 
sterilization, enzymolysis, as well as modifications on 
enzymes and substrate materials. Additionally, they 
play a crucial role in treating enzymatic hydrolysis 
processes, washing procedures involving pesticide 
removal, microorganism reduction, and supporting 
quality standards[38].

Figure 5. Various ultrasonic devices for food processing, such as extraction, thawing, maturation, drying, degradation, 
blanching, sterilization, and enzymolysis[38].
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Ultrasonics can benefit mineral processing through 
the removal of surface coatings of clay and iron oxides 
from mineral surfaces[39,40]. Ultrasonication is also an 
efficient surface cleaning method for coal flotation[41-43] 
and minerals flotation[44] plus textile cleaning[45-47] etc. 
The enhanced flotation performance can be attributed 
to two factors: improved surface cleaning effects 
and the presence of ultrasonic cavitation. Interactive 
between cavitation bubbles and coal particles, and a 
comparison of conventional and ultrasonic methods 

for coal flotation as shown in Figure 6. Observation 
from Figure 6 proved that ultrasonic cavitation made 
froth more uniform and delicate. The introduction of 
ultrasonic cavitation contributes to increased efficiency 
in favorable collision, attachment, and detachment 
processes. During the cleaning process, when cavitation 
bubbles replace clay particles, a larger number of 
reagents are absorbed onto the coal surface. As a 
result, reagent consumption during flotation is reduced, 
leading to more efficient flotation operations[43].

 
Figure 6. (a) Ultrasonic cavitation bubbles on coal flotation; photos of the coal froth (b1: conventional; b2: ultrasonic)[48]

3.3 Surface Activation/Modification
Ultrasonic cavitation can induce localized heating and 
chemical reactions on the surface of a material, leading 
to the formation of new chemical bonds or functional 
groups on the surface of the material[10,49-52]. The high-
energy shockwaves generated by ultrasonic cavitation 
can also cause micro-scale deformation of the surface, 
which can alter the surface texture. This can be useful 
for creating surface patterns or textures for various 
applications[53-55]. Ultrasonic cavitation can be used to 
introduce functional coatings or nanoparticles onto 
the surface of a material, as the cavitation bubbles 
can function as nucleation sites for the deposition 
of new materials[15,56-58]. In some cases, ultrasonic 
cavitation can be used to modify the surface chemistry 
or structure of materials. For example, the high-energy 
cavitation bubbles can create reactive species such as 
radicals or ions that can react with the surface, leading 
to changes in surface chemistry or the creation of 
functional groups[59-61]. 

Ultrasonic cavitation can induce chemical reactions 
and changes in the crystalline structure of materials, 
leading to modifications in surface properties such as 

hardness, wear resistance, and corrosion resistance. 
However, prolonged exposure to high-intensity 
ultrasonic cavitation can lead to erosion and damage to 
the surface of materials[33,62,63].

Most of studies of ultrasonic cavitation on surface 
activation/modification are applied on biomaterials[64] 
and polymers[65], such as biochar[66], fibers[67] etc.

3.4 Surface Corrosion 
Cavitation corrosion, also known as cavitation erosion, 
is a type of mechanical damage that occurs to the 
surfaces of materials, particularly metals, due to the 
formation and collapse of cavities or bubbles in a 
liquid medium. Cavitation corrosion emerges when 
operational pressure falls below the vapor pressure of a 
fluid, leading to the creation of gas bubbles that implode 
with heightened force against material surfaces, 
instigating an initial stage of cavitation. During this 
process, known as "vena contracta", pressure drops 
while velocity surges. Given the corrosive nature of 
the fluid within the system, cavities that form initiate 
corrosive reactions within the affected area, triggering 
corrosion in response to the surrounding environment. 
This cavitated area has the potential to evolve into pits, 
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thereby setting off a sequence that may eventually lead 
to cracking[68]. Most studies of cavitation corrosion are 
on alloys[69-77] and steels[78-83]. 

Figure 7 displays cavitation-corrosion behavior of 
Ni/β-SiC nanocomposite coatings under an ultrasonic 
field[84]. In Figure 7a, every cavitation cycle displays 
a pronounced and swift positive alteration in potential 
precisely at the onset of the cavitation process. In 
Figure 7b, the presence of cavitation conditions is 
marked by a noteworthy negative shift in potential. 
Closer scrutiny of the open circuit potential (OCP) 
diagrams reveals a comprehensive pattern in both 

specimens, each cavitation cycle comprising four 
distinct potential shift phases: (1) positive change, (2) 
negative change during cavitation, (3) negative change, 
and (4) positive change during stagnation. These shifts 
are encapsulated in a simplified schematic, effectively 
depicted in Figure 7c. Initially, the specimen's status is 
represented by Point A, characterized by the corrosion 
potential (EcorrA) and the current density (icorrA). 
The findings indicate that cavitation has the capacity 
to expedite both cathodic and anodic reactions, while 
the extent of potential shift aligns with the corrosion 
tendencies inherent to the materials.

 

 
Figure 7. Free corrosion potential of (a) composite coating and (b) stainless steel substrate in 3.5 wt% NaCl; (c) schematic behavior 
of Ecorr and icorr vs. time in a period of cavitation/stagnant for Ni/Nano SiC composite coating and the substrate in 3.5 wt% NaCl[84]
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Selvam et al.[85] reported a single-step processing 
technique to create a bimodal grain structure in 
stainless steel, as displayed in Figure 8. Bimodal 
steel showcased a remarkably robust resistance to 
degradation, exhibiting a nearly sevenfold increase 
in resistance compared to the original as-received 

steel. The exceptional capacity of the bimodal steel to 
withstand cavitation erosion is credited to its elevated 
yield strength, complemented by a significant work-
hardening rate. These combined attributes effectively 
contribute to its superior performance in resisting the 
erosive effects of cavitation.

 

 
Figure 8. Schematic representation of friction stir processing for developing bimodal grain structure and ultra-fine grain 

structure in stainless steel (i); (a) Cumulative mass loss for all samples subjected to cavitation erosion for 20 h, (b) Cumulative 
mass loss for all samples subjected to cavitation erosion-corrosion for 20 h, (c) sub-surface hardness of post-cavitation (pure 
erosion) tested samples and (d) XRD analysis of post-cavitation tested samples (ii); SEM images for (a) as-received steel, (b) 
ultra-fine grain (UFG) specimen, (c) bimodal (BM) specimen, (d) zoomed in image of the region marked in (c) after 20 h of 

cavitation erosion (iii).Comparison of mean depth of erosion during cavitation erosion and erosion-corrosion for bimodal steel 
(current study) with different high entropy alloys (HEA) and amorphous coatings and bulk materials (iv). (a) Total volume 

loss (VT) in 3.5% NaCl, volume loss for pure erosion (VE), volume loss from pure corrosion (VC), volume loss from erosion 
enhanced corrosion (VEIC) and volume loss from corrosion enhanced erosion (VCIE) for as-received, UFG and BM specimen 

(b) percentage contribution of individual components: erosion, corrosion, and synergy in total volume loss (v)[85]
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4. Conclusion
Ultrasonic cavitation can effectively affect the surficial 
properties of material, particularly metal from the 
perspective of surface roughness, surface cleaning, 
surface modification and surface corrosion. 

The implosive collapse generates microjets that can 
remove contaminants, oxides, and debris from the 
metal surface. This effect is often used in ultrasonic 
cleaning processes.

The localized high pressures and temperatures 
during bubble collapse can induce plastic deformation, 
micro-machining, and even the formation of nanoscale 
features on the metal surface. This can be used for 
surface texturing or patterning.

The agitation caused by cavitation bubbles can 
enhance mass transfer processes at the metal-liquid 
interface, which can be advantageous in materials 
processing.

In some cases, the repeated collapse of cavitation 
bubbles can lead to cavitation erosion, which involves 
the gradual removal of material from the metal surface 
due to the mechanical stresses generated during bubble 
collapse.

Ultrasonication offers versatile applications in the 
food industry, enabling improved cleaning, extraction, 
emulsification, enzymatic reactions, microbial control, 
and texture modification. It contributes to enhanced 
product quality, process efficiency, and food safety.

The specific application of ultrasonic treatment in 
mining can indeed vary based on factors such as the 
ore's characteristics, the desired outcome, and the 
operational requirements of the mining operation. It is 
worth noting that ultrasonic technologies are constantly 
being developed and tailored to suit specific mining 
applications. These advancements aim to enhance 
efficiency, promote sustainability, and improve the 
overall environmental performance of the mining 
industry.

However, the mechanisms driving the interactions 
between ultrasonic cavitation and metals are complex. 
It is important to note that the specific effects of 
ultrasonication on a material's surface depend on 
factors such as ultrasonic frequency, power, duration, 
and the nature of the material itself. Optimization of 
these parameters is necessary to achieve the desired 
surface effects without causing damage.
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