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Abstract: One of the promising fields of research is tissue engineering that can facilitate available therapeutic
methods. Nanosized hydroxyapatite (HA) is one of the key elements in mineral bone. It is possible to affect the
surrounding osteoprogenitor cells using nano-sized HA and through this improve bone repair through changing
paracrine signaling. The present paper is an attempt to prepare and evaluate physicochemical properties of
hydroxyapatite-gelatin nanoparticles. To this end, two sizes were prepared including S100 and S150 using
standard chemical precipitation. To characterize the size and morphology of the synthesized powders, X-ray
diffraction and Brunauer-Emmett-Teller (BET) surface area were determined using Autosrob-IQ2-MP. To
measure the calcium ions released by HANPs, an inductively coupled plasma optical emission spectrometer
(ICP-OES) was used. The collected data was analyzed in SPSS 19.0. In the case of S100, the hydrodynamic
diameter based on DLS analyses was equal to 626.10+14.95 nm; this figure for S150 was equal to 262.33+46.5.
There was a larger specific surface area in S100 compared to S150; in addition, S100 had wider diffraction
peaks, which is in agreement with small and poorly crystalline crystals. On the other hand, the diffraction peaks
of S150 were sharper, which means that the crystallinity was higher in S150. In addition, HANPs of all sizes
had degradability and HANPs with smaller sizes (S100) degraded faster compared to larger-sized S150. The pH
level of the control, S100, and S150 was 7.24+0.01, and 7.26+0.02 so that there was no significant difference
between them. Nanoparticle size is a key factor in the biological environment, which provides a reference for
HANPs in biomedical uses.
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1. Introduction an interdisciplinary field that uses the principles of life
Tissue engineering is A promising research ficld ~ sciences and engineering to create biological substitutes
o ) . : ; L1
to lower the complication of therapeutic methods. It is ~ t0 preserve, improve, and restore tissue functions™ ™.
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Over the past few years, engineered nanoparticles
and nanotechnology have emerged as a new field in
material science. It is possible to use nanotechnology
to alter matter at the atom level and create new
nanoproducts containing new properties'™’. The new
properties of these materials have been extensively
studied in cosmetics, medicine, and environment and
technology. A highly complicated field of material
science is biomaterials so researchers have tried to
develop improved biomaterials with specific uses in
medicine.

Nanosized hydroxyapatite (HA) is the key
component in mineral bone. Living bones permanently
experience a formative-resorptive process known
as bone remodeling. The process features bone
replacement and removal that happens at the same
time through the respective activities of osteoclasts and
osteoblasts along with vascular supply and a network of
lacunae and canaliculi®®. HA demonstrates exceptional
bioactivity and biocompatibility properties as to bone
tissues and cells, mostly because of similarity with the
body’s hard tissues. So far, the most common clinically
used biomaterial is calcium phosphate, which is used
as granules, powder, dense and porous blocks and
different composites Calcium phosphate materials are
the key mineral part of calcified tissues. Still, calcium
phosphate is mostly found in the bone as nanometer-
sized needle-like"™"".

One of the mainstreams of research works is new
HA formulations to develop more effective and better
biomedical applications and produce materials as
similar as possible to living bones like monolithic and
nanosized structures!”"*. In comparison to standard
ceramic formulation, the properties of nanophase
HA like pore size, surface grain size, wettability
and so on can control protein interactions (e.g.
configuration, adsorption, and bioactivity). Thus. Long-
term functionality and osteoblast adhesion improve
modulating subsequent' ",

Regeneration of bone essentially happens along
with the invasion of neovessels. The inner lining of the
vascular system is formed by an endothelial cell (EC)
that passively delivers blood and also has a role in
specifying, inducing, and guiding organ regeneration. It
also helps maintain homeostasis and metabolism'"*".
Mesenchymal stem cell (MSC) plays a role in the
periendothelial niche and has a self-renewal and multi-

differentiation capability when induced by biochemical
microenvironments and particularly physiological in
their resident niches. HA nanoparticles (HANPs) in
bone tissue engineering might contact with neovessels
and become endocytosed by EC, which can change
the physiological functions of the cells!**'. This may
also affect the surrounding osteoprogenitor cells and
bone repair through changing paracrine signaling. Still,
we know a lot about the direct effect of HANPs on
MSCs while our knowledge of HANPs role in inducing
osteogenic differentiation of MSCs through EC is very
limited. This insight is needed to have a clearer picture
of the effects of HANPs on bone repair and the first
step for this goal is understanding physiochemical
characteristics of HANPS. The present study is an
attempt to prepare and evaluate physicochemically
hydroxyapatite-gelatin nanoparticles as a nanoparticle
for Mesenchymal Stem Cell bone damage.

2. Material and Methods

2.1 Conventional chemical precipitation of HANPs

HANPs was prepared at two sizes assigned with
S100 and S150 using standard chemical precipitation.
In short, drops of calcium chloride (CaCl,) solution
were added to diammonium hydrogen phosphate
((NH,),HPO,) solution while the solution was gently
stirred and the molar ratio of Ca/P was at 1.67. Along
with the precipitation, aqueous ammonia was used to
modify pH values up to 8 and 10 for S100 and S150
respectively. In addition, the temperature for S100 and
S150 was stabilized at 50°C and 90°C respectively.
Following precipitation, the obtained suspension was
kept at ambient temperature for 16 h. Eventually, the
obtained powder was collected, washed using deionized
water, and dried using vacuum freeze drying.

2.1.1 Precipitation of gelatin solution

Afterward, 0.1% solution of gelatin in
double deionized water was developed and then,
nanohydroxyapatite powder was added to it to obtain
a mixture with a final weight of 61% gel and 0.1%
hydroxyapatite. The obtained solution was stirred using
a magnetic stirrer (Hidofl-Germany) for 10 min at 10°C
to achieve a uniform solution. The obtained solution
was poured into a petri dish with a plastic thickness of
2mm. The obtained sample was stored in a freezer for
20 h until it was dry. However, only HANPs were used
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in the tests.

2.1.2 Morphology and size of HANPs

The size and morphology of the synthesized
powder were determined using transmission electron
microscope. The crystalline phases of the powders
examined using Xray diffraction. To measure Brunauer-
Emmet-Teller (BET) surface area, Autosorb-1Q2-
MP was used. The hydrodynamic diameter of S150
and S100, dispersed in basal medium using 10% fetal
bovine serum and measured through dynamic light
scattering.

2.1.3 The effect of HANPs on the pH

To examine the effect of HANPs on the pH of the
culture medium, 10 pg/mL of HA NPs was immersed in
the osteogenic induction medium at 37°C in humid air
containing 5% CO,. The osteogenic induction medium
was renewed once every two days, so that the pH of
the medium with and without HANPs was measured
following two days of incubation.

Figure 1. The surface area of S100 (A) and S150 (B) Particles.

3.2 XRD patterns of S150 and S100

2.2 Calcium ions released by HANPs

The experiment to examine degradation in vitro
was carried out through immersing 10 pug/mL of
HANPs in DPBS for 14 days at 37°C. To measure
the concentration of calcium ions discharged by
HANPs, inductively coupled plasma optical emission
spectrometer (ICP-OES) was used.

2.3 Data analysis

The results were reported as mean = SD and data
analyses were done in SPSS19.0 (p < 0.05) using one-
way ANOVA and Tukey tests.

3. Results

3.1 Size and hydrodynamic diameter of HANPs

The S100 and S150 were about 100 and 150 nm
in length respectively and the width was 15 and 20 nm
respectively. The hydrodynamic diameter according to
DLS analysis for S100 and S150 were 626.10 + 14.95
nm and 262.33 + 46.5 nm respectively. The surface
area of S100 was higher than S150 (Figure 1).
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Figure 2. XRD patterns of S100 (A) and S150 (B) Particles.
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As shown by the standard card of HA, the XRD
pattern of S150 and S100 with typical characteristic
diffraction peaks was seen in crystalline HA phase
(25.87°, 31.78°, 46.71°, 49.47°, and 53.14°). In
addition, the broadening diffraction peaks of S100
were higher, which indicates poor crystalline and
small crystals. On the other hand, S150 had a sharper
diffraction peak compared to S100, which indicates a
higher crystallinity of S159 (Figure 2).

3.3 Calcium ion release
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The ICP-OES was used to measure the release of
Ca’ ions from HANPs in DBPS. The concentration
of Ca” of S150 and S100 groups was significantly
higher than the control group (DPBS only). In addition,
following 14 days of soaking, the Ca®" discharge
from S100 demonstrated 117% increase compared to
S150, which is a significant increase. The findings also
indicated that HANPs had degradability regardless of
size and HANPs of smaller size (S100) had a faster
degradation compared to S150 (Figure 3).
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Figure 3. Calcium ion release of S100 (A) and S150 (B) Particles.

3.4 The effect of HANPs on medium pH

Following two days of incubation with standard
cell culture condition, the pH in the control group
(medium without HANPs) was equal to 7.23+0.02.
In addition, the pH of S100 and S150 mediums was
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7.24+0.01 and 7.26+0.0 respectively. All of them show
no significant changes in comparison to the control
group. The findings showed that adding HA NPs had
no effect on the pH of the culture medium (Figure 4).
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Figure 4. Effect of S100 (A) and S150 (B) Particles on Medium pH

4. Discussion

Regeneration of bone is a physiological phenomenon
involving complicated and diverse cellular actions like

differentiation and migration of mesenchymal stem
cells (MSCs). The HANPs is used as an artificial bone
material and can be taken up by cells because of their
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length scale which is comparable to proteins and
discrete elements of cells. Therefore, it can influence
the functions of the cell, which in turn affects bone
repair. The MSCs demonstrate the potential of self-
renewal and multi-differentiation so that they can be
used in reparative and regenerative medicine’**. Tn
terms of structure, HANPs are similar to the main
mineral component of the bone and teeth and the
products that have nanoparticles have improved the
precipitation of calcium and phosphate ions in the
tooth structure™*”). Studies have shown that HANPs
10% suspension (10-20 nm in diameter) improved
remineralization of the outer layer in initial caries
lesions to a depth of 20-40 um. Still, the body of lesion
demonstrated a small level of remineralization*”.
Another study showed that nano-HA (20 nm in size and
100-150 mm dimension) improved remineralization
in the subsurface of initial lesions mostly in dentin
compared to enamel™.

Compared to standard HANPs that have a flat
surface, the nano-sized HANPs have underlying
crystals; they can cause a higher level of stress
concentration at the cell-crystal interface along with
higher Ca’* exchange because of a higher cell extension
on the surface. These features benefit osteoblast
differentiation of MSCs™. In addition, the HANPs can
act as a mediator of adhesion of specific anchorage-
dependent cells through adsorbing extracellular
matrix proteins such as fibronectin and growth factors
such as osteonectin””. It is notable that studies have
indicated that autophagy in osteoblasts has a role in
mineralization and bone homeostasis and considered
nHAP as a new class of autophagy inducer. In addition,
what matters the most are the size or shape that
stimulate autophagy. The role of needles and spherical
shaped HA particles was examined by Xu et al.®'"! on
protein expression profiles in osteoblasts. They showed
that, compared to spherical particles, phase pure needle
shaped HA nanoparticles improved differentiation of
osteoblasts. According to Xu ef al. the volume of Ca”"
ions release was responsible for diverse behaviors of
the spherical and needle shaped particles. In the case
of clinical uses, nanoparticles must be incorporated
or coated on 3D scaffolds, and HA nanoparticles
might demonstrate different behaviors compared to
pure particles when exposed to other materials with
different degradation capabilities. Here, the BCP

porous scaffolds were coated with diverse sizes and
shapes of HA nanoparticles when combined with PCL
and their effects on HOB behavior were examined.
These applications in HANPS need different sizes and
shapes. The HANPs used in this study were two sizes
and prepared using chemical precipitation methods
through changing the temperature and pH of the
reaction solution. First, phosphate anions and calcium
ions yielded amorphous calcium phosphate (CaP) or
hydrated orthophosphates, which led to transformation
into HA through phase transformation under the right
condition””. Therefore, HA had a slow and prolonged
growth process. The higher precipitation temperature
and higher energy supply accelerated HANPs growth.
There were wide and low diffraction peaks of S100,
while S150 demonstrated well-differentiated peaks,
which can be due to a higher c-axis of the unit cells of
S150 with higher precipitation temperature. Different-
size hexagonal CdS nanoparticles were prepared
by other researchers and it is possible to control the
growth rate of the OH-absorbed crystallite facets using
the shielding effect of OH- on the interface In general,
the different aspect ratios and sizes of S150 and S100
were due to changes in pH values. In conclusion,
nanoparticle size is a key factor in the biological
environment that gives us a reference for HANPs in
biomedical application.
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