人工智能在农业生产信息化中的应用与前景

贺常乐 姬斌斌 王亚蓉 王 凯 兰州资源环境职业技术大学 甘肃 兰州 730021

摘 要:本文探讨了人工智能技术在农业生产信息化中的应用与前景,涵盖智能种植决策、精准灌溉施肥、病虫害识别防控、农产品质量检测等方面。经过分析这些技术在提高生产效率、优化资源配置、降低成本中的优势,揭示了人工智能技术对现代农业的深远影响,并为未来智慧农业的发展提供理论基础和实践指导。

关键词:人工智能技术;农业生产信息化;智能种植决策

引言

随着全球人口的增长和气候变化的加剧,传统农业 面临巨大挑战。现代农业生产急需转型,信息化与智能 化成为解决农业问题的重要路径。经过引入先进的信息 技术,农业生产的各环节得以优化,资源利用效率显著 提升,环境影响有效减少。本文聚焦于探索人工智能在 农业生产中的应用与前景,经过系统性分析,为农业的 可持续发展提供理论支持和实践指导。

1 人工智能在农业生产各环节的应用

1.1 智能种植决策与管理

智能种植决策与管理是人工智能技术在农业生产中 的重要应用之一。人工智能经过整合土壤、气象、作物 生长等多维度数据,能够提供科学、精准的种植建议 和管理方案,帮助农民优化种植决策,提高作物产量和 质量。在智能种植中, 传感器网络可以实时监测农田环 境,如土壤湿度、温度、光照等因素,并将数据传输至 中央处理系统。系统经过大数据分析和模型预测,能够 判断最适宜的播种时间、最佳的作物种类及其种植密 度,而制定科学的种植计划[1]。智能管理系统还可以动态 调整种植策略, 应对天气变化和病虫害威胁, 保证作物 的健康生长。在作物生长过程中,智能管理系统持续监 控农田环境和作物状态,经过图像识别技术,及时发现 作物病虫害及生长异常,并提供相应的处理措施。农民 可以经过移动终端实时获取农田信息和管理建议,提高 了种植效率和农田管理的精准度。智能种植决策与管理 提高了农业生产的科学性和精确度,还显著减少了资源 浪费和环境污染。

1.2 精准灌溉与施肥

精准灌溉与施肥是农业生产中利用人工智能技术实 现资源高效利用和环境保护的重要环节。精准灌溉与施

作者简介: 贺常乐(2001年1月-), 男, 甘肃武威人, 研究方向: 生态环境工程技术

肥系统经过先进的传感器和数据分析技术,能够实时监测土壤水分、养分含量及气象条件,提供精确的灌溉和施肥方案,而优化农业资源的使用效率。把传感器网络布置在农田中,实时采集土壤水分、养分含量、温度和湿度等数据。这些数据通过无线网络传输至中央处理系统,系统运用数据分析技术,综合考虑作物的需水需肥特性及生长阶段,生成最优的灌溉和施肥方案^[2]。与传统的灌溉施肥方式相比,精准灌溉与施肥提高了资源利用率,还显著减少了水资源和化肥的浪费。智能灌溉系统能够根据土壤湿度和天气预报,自动调节灌溉频率和水量,保证作物在不同生长阶段获得适宜的水分。这样避免了过度灌溉导致的水资源浪费和土壤盐碱化,还有效防止了因灌溉不足引起的作物减产。同时,智能施肥系统分析土壤养分状况和作物需求,精准控制施肥量和施肥时间,避免了过量施肥导致的环境污染问题。

1.3 农作物病虫害智能识别与防控

农作物病虫害智能识别与防控是人工智能在农业生 产中应用的关键领域之一,经过先进的图像处理和机器 学习技术,显著提升了病虫害监测和防控的效率和精准 度。利用高分辨率摄像头和无人机技术,实时采集农作 物的生长图像和环境数据。经过图像处理技术, 对采集 的图像进行分析, 识别出病虫害的具体类型、分布范围 及严重程度。基于机器学习算法,系统能够不断学习和 优化识别模型,提高识别的准确性和效率。智能识别系 统结合地理信息系统(GIS)技术,将病虫害信息可视 化,生成详细的病虫害分布图。这有助于农民迅速了解 农田中病虫害的情况,还能为科学决策提供重要依据。 系统经过数据分析和模型预测,能够提前预警病虫害的 爆发趋势,帮助农民制定有效的防控措施。在防控方 面,智能系统能够根据识别结果,提供针对性的防治建 议,包括最佳的防治时间、适用的农药种类和剂量等。 与传统的广泛使用化学农药不同,智能防控系统强调精 准施药,尽量减少农药的使用量和频次,从而降低环境 污染和对作物的负面影响。

1.4 农产品质量智能检测与分级

农产品质量智能检测与分级是人工智能技术在农业 生产中应用的重要领域,经过精确的检测和分类手段, 保证农产品的高质量和市场竞争力。智能检测系统利用 多种传感器和数据分析技术,对农产品进行全面的质量 评估和自动分级。农产品在收获和加工过程中,利用高 分辨率摄像头、近红外光谱仪等传感设备,进行外观、 色泽、形状、大小、内在品质等多维度数据的采集。这 些数据传输至中央处理系统,系统利用图像处理和光谱 分析技术,对农产品进行精确的质量检测,识别出外观 缺陷、内部瑕疵及营养成分含量等。基于检测结果,智 能分级系统运用机器学习算法,对农产品进行快速分 类。系统预先训练的分类模型,能够根据农产品的不同 质量指标,将其分为不同等级。这样提高了分级的准确 性和效率,还避免了人为因素导致的误差,确保每批农 产品的质量标准一致。智能检测与分级系统还能实时反 馈检测数据, 生成详细的质量报告, 为农民和农业企业 提供科学的质量管理依据。

2 人工智能在农业生产信息化中的优势

2.1 提高农业生产效率

人工智能在农业生产信息化中的应用显著提高了农 业生产效率,经过自动化和智能化技术的引入,实现了 生产过程的优化和资源的高效利用。智能种植决策系 统经过大数据分析和模型预测,能够准确预判最佳的种 植时间和作物类型,减少了因决策失误导致的资源浪费 和产量损失。传感器网络实时监测农田环境,提供精准 的水肥管理方案,确保作物在最佳条件下生长,提高了 作物的产量和质量。自动化机械设备在播种、施肥、灌 溉、收割等环节的应用,减少了人工操作的时间和劳动 强度[3]。例如、智能灌溉系统经过实时监测土壤湿度和 天气预报,自动调节灌溉频率和水量,避免了传统灌溉 方式中的水资源浪费问题。智能施肥系统根据土壤养分 状况和作物需求,精准控制施肥量,既提高了肥料利用 率,又减少了环境污染。在病虫害防控方面,智能识别 系统经过图像处理和机器学习技术, 能够快速识别病虫 害类型和分布情况,并提供相应的防治措施。这样提高 了病虫害防控的效率,还减少了农药的使用量,降低了 生产成本和环境负担。

2.2 优化资源配置与管理

人工智能技术在农业生产信息化中的应用,有效优 化了资源配置与管理,提升了农业资源利用效率,促进 了农业的可持续发展。人工智能技术通过传感器和数据采集设备,实时监测农田中的土壤湿度、温度、养分含量等关键信息。这些数据经过网络传输至中央处理系统,进行综合分析和处理。基于数据分析结果,系统能够准确预测农作物的水、肥需求,制定科学的灌溉和施肥方案,避免了传统农业中资源浪费和过度使用的问题。精准农业技术的应用,让资源分配更加精确。传统农业中,水资源和化肥往往以均匀方式分配,无法针对不同地块的实际需求进行调整。人工智能技术可以根据不同地块的具体情况,精确控制水资源和肥料的分配,让每一块地都能得到适量的资源供应,从而最大限度地提高资源利用效率。

2.3 降低农业生产成本

人工智能在农业生产信息化中的应用,经过多种涂 径有效降低了农业生产成本,而提升了农业的经济效益 和竞争力。智能化设备的应用减少了人力成本。传统农 业生产中,播种、施肥、灌溉和收割等环节需要大量人 力投入。经过使用智能播种机、智能施肥机和智能收割 机等自动化设备,农业生产过程变得更加高效和精准, 大幅减少了对人工劳动力的依赖。自动化操作提高了生 产效率,还降低了人工误差,节约了成本。精准灌溉和 施肥系统经过实时监测土壤和作物的状态,提供定制化 的水肥方案,避免了传统灌溉和施肥中资源浪费的问 题。精准农业技术确保了资源的合理分配,减少了水肥 的过度使用,从而降低了水费和肥料成本。此外,经过 减少过量施肥和灌溉,还降低了因环境污染而产生的治 理成本。在病虫害防控方面,智能识别系统能够快速检 测和诊断病虫害,并提供精准的防控方案。这种高效的 病虫害管理方式,减少了农药的使用量,降低了农药采 购和施用成本。

3 人工智能在农业生产信息化中的应用前景

3.1 智能农业装备的迭代升级

智能农业装备的迭代升级是推动农业生产信息化发展的重要引擎。随着科技的进步,智能农业装备在硬件和软件方面都在不断更新和优化,为农业生产提供了更高效、更精准的技术支持。在硬件方面,传感器技术、无人机技术和自动化机械设备的持续发展,让智能农业装备能够更加精准地采集和处理农田数据。先进的传感器能够实时监测土壤湿度、温度、养分含量等关键参数,无人机技术则能够快速、全面地获取农田的遥感图像,自动化机械设备能够高效完成播种、施肥、灌溉和收割等任务[4]。在软件方面,人工智能算法和大数据分析技术的进步,为智能农业装备提供了强大的数据处理

和分析能力。智能系统经过机器学习算法,能够从大量历史数据中学习和预测农作物的生长规律,优化种植决策。大数据分析技术则能够整合多源数据,提供全面、精准的农业生产管理方案。未来,随着智能农业装备的进一步升级和普及,农业生产将变得更加智能化和自动化。这能够提高农作物的产量和质量,还能减少资源浪费和环境污染,实现农业生产的可持续发展。

3.2 农业大数据与人工智能的深度融合

农业大数据与人工智能的深度融合是推动农业生产 信息化的重要方向。将海量数据与智能分析技术结合, 可以实现农业生产全过程的精准管理和优化, 为农业发 展注入新的动力。农业大数据的积累和整合为人工智能 提供了丰富的基础数据。这些数据来源广泛,包括土壤 信息、气象数据、作物生长数据、病虫害监测数据等。 通过数据采集和传输技术,这些数据能够实时汇集到中 央数据平台,为后续的分析和应用提供坚实的基础。人 工智能技术在农业大数据的处理和分析中发挥关键作 用。系统经过机器学习和深度学习算法,能够从海量数 据中挖掘出有价值的信息, 识别出影响作物生长的关键 因素,并建立精确的预测模型。例如,对历史气象数据 和作物生长数据的分析,可以预测未来的气候变化对作 物产量的影响,帮助农民提前做好应对措施。未来,随 着物联网和5G技术的发展,农业大数据的采集和传输将 更加高效,人工智能的计算能力和算法也将不断提升。 两者的深度融合,将推动农业生产向智能化、精准化方 向发展, 实现农业生产的全面升级。

3.3 人工智能推动农业生产模式变革

人工智能技术的应用正推动农业生产模式发生深刻 变革,经过自动化、智能化和精准化,提升了农业生产 的整体效率和可持续性。人工智能推动了农业生产过 程的自动化和智能化。智能农机设备,如无人驾驶拖拉机、智能播种机和自动化收割机等,能够在没有人工干 预的情况下,高效完成田间作业。集成先进的传感器和导航系统等设备可以精确操作,减少资源浪费和人为误差,显著提高生产效率。人工智能实现了农业生产的精准化管理。智能系统经过大数据分析和机器学习算法,能够根据土壤、水分、气候等多维度数据,提供精确的种植、灌溉和施肥方案。这种精准农业技术优化了资源配置,减少了水肥浪费,还提高了作物产量和质量。农民可以根据系统建议,进行科学管理,提升生产的科学性和效益。未来,随着人工智能技术的不断发展和成熟,农业生产模式将进一步向智能化、精准化和可持续

化方向转变。这一变革有助于提高农业生产效率和资源 利用率,还能应对全球气候变化和人口增长带来的挑战,确保粮食安全和农业的可持续发展。

3.4 面向未来的智慧农业生态系统构想

面向未来的智慧农业生态系统构想,基于人工智能 技术,将农业生产、管理和生态保护有机结合,构建一 个高效、可持续和智能化的农业体系。这一系统的核心 在于经过多层次、多维度的智能化手段,实现农业生产 的全方位优化和资源的高效利用。智慧农业生态系统将 实现全程数据驱动的农业管理。经过物联网技术,农田 中的传感器实时采集土壤、水分、气候、作物生长等数 据,并通过无线网络传输至中央数据平台[5]。基于大数据 和人工智能技术,这些数据将被系统化分析,用于指导 精准种植、灌溉、施肥和病虫害防控,实现农业生产的 精细化管理。智能决策支持系统是智慧农业生态系统的 重要组成部分。该系统通过整合多源数据和先进的人工 智能算法,提供科学的种植决策和管理建议。例如,根 据气候预测和土壤状况,系统可以推荐最适宜的作物种 类和种植时间:根据实时监测数据,系统可以优化灌溉 和施肥策略,提高资源利用效率。未来的智慧农业生态 系统,还将借助区块链技术,实现农业生产各环节的数 据共享和透明化管理。利用区块链技术,建立农产品的 全程溯源系统,保证每一个环节的信息真实、可靠,提 升农业生产的公信力和透明度。

结论

人工智能技术的应用在农业生产信息化中展现出广 阔前景,经过智能化管理、精准资源配置和自动化操 作,提升了生产效率,降低了成本,还促进了农业的可 持续发展。未来,随着技术的不断迭代和融合,智慧农 业生态系统将逐步优化,推动农业迈向高效、绿色和智 能化的新阶段,为粮食安全和生态保护提供坚实保障。

参考文献

[1]高荣良.人工智能技术在现代农业机械中的应用研究[J].现代农机,2024,(03):121-124.

[2]高宏云,华蕾,毛洪霞,等.人工智能在农业生产中的应用[J].粮油与饲料科技,2024,(01):188-190.

[3]袁淑芳.浅谈人工智能技术在智慧农业生产中的应用[J].农业工程技术,2024,44(05):29-30.

[4]张文雨.基于大数据和人工智能技术的农业生产计划优化策略研究[J].农村经济与科技,2024,35(03):63-66.

[5]吴晓童,张颖.人工智能技术在农业机械上的运用分析[J].农村实用技术,2023,(09):115-116.