AI at the Crossroads of Cost and Care: A SWOT Analysis of Microsoft AI Diagnostic Orchestrator (MAI-DxO) in Clinical Diagnosis

Malik Sallam ( Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan )

Chadia Beaini ( Department of Nephrology/Dialysis, Mediclinic Welcare Hospital, Mediclinic Middle ‎East, Dubai, ‎United Arab Emirates )

Maad M. Mijwil ( College of Administration and Economics, Al-Iraqia University, Baghdad, Iraq )

Mohammed Sallam ( Department of Pharmacy, Mediclinic Parkview Hospital, Mediclinic Middle East, Dubai, United Arab Emirates )

https://doi.org/10.37155/3060-8708-02

Abstract

The deployment of superintelligent generative artificial intelligence (genAI) in clinical diagnosis marks a key inflection point in the evolution of modern healthcare. Microsoft’s AI Diagnostic Orchestrator (MAI-DxO), developed in collaboration with OpenAI’s large language models (LLMs), demonstrated diagnostic accuracy exceeding 85%. These outcomes—validated on hundreds of complex clinical cases—position MAI-DxO as both a disruptive force and a potential cost-saving solution in overburdened health systems worldwide. Despite these performance gains, the adoption of superintelligent genAI must be carefully examined through a structured evaluative lens. This Perspective employed a SWOT analysis—assessing Strengths, Weaknesses, Opportunities, and Threats—to critically appraise the implications of deploying MAI-DxO in clinical workflows. We explored its capacity to alleviate diagnostic bottlenecks, reduce healthcare expenditure, and extend care to underserved regions, while also addressing risks such as the erosion of clinical expertise, data biases, over-reliance on automation, and accountability concerns. We argue that successful integration of diagnostic superintelligent genAI will require proactive governance, transparent validation, and a reaffirmation of the physician’s interpretive role in care. MAI-DxO is not merely a technological advancement—it is a redefinition of diagnostic authority. Ensuring that this transformation benefits both patients and the profession demands foresight, regulation, and a deep commitment to medical ethics.

Keywords

Artificial intelligence; Diagnostic accuracy; Healthcare economics; Clinical decision support

Full Text

PDF

References

[1]. Nori H, Daswani M, Kelly C, et al. Sequential Diagnosis with Language Models. arXiv. 2025;doi:10.48550/arXiv.2506.22405
[2]. King D, Nori H, Microsoft. The Path to Medical Superintelligence. Microsoft AI. 2 July 2025, 2025. Updated 30 June 2025. Accessed 2 July 2025, 2025. https://microsoft.ai/new/the-path-to-medical-superintelligence/
[3]. Sallam M. Bibliometric top ten healthcare-related ChatGPT publications in the first ChatGPT anniversary. Narra J. Aug 2024;4(2):e917. doi:10.52225/narra.v4i2.917
[4]. Speer M, McCullough JM, Fielding JE, Faustino E, Teutsch SM. Excess Medical Care Spending: The Categories, Magnitude, and Opportunity Costs of Wasteful Spending in the United States. Am J Public Health. Dec 2020;110(12):1743-1748. doi:10.2105/ajph.2020.305865
[5]. Shrank WH, Rogstad TL, Parekh N. Waste in the US Health Care System: Estimated Costs and Potential for Savings. Jama. Oct 15 2019;322(15):1501-1509. doi:10.1001/jama.2019.13978
[6]. Socha K, Couffinhal A, Forde I, et al. Tackling Wasteful Spending on Health.OECD 2017. 2017.
[7]. Berwick DM, Hackbarth AD. Eliminating waste in US health care. Jama. Apr 11 2012;307(14):1513-6. doi:10.1001/jama.2012.362
[8]. Khanna NN, Maindarkar MA, Viswanathan V, et al. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare (Basel). Dec 9 2022;10(12):2493. doi:10.3390/healthcare10122493
[9]. Lyons AM, Sward KA, Deshmukh VG, Pett MA, Donaldson GW, Turnbull J. Impact of computerized provider order entry (CPOE) on length of stay and mortality. J Am Med Inform Assoc. Mar 1 2017;24(2):303-309. doi:10.1093/jamia/ocw091
[10]. Yu FB, Menachemi N, Berner ES, Allison JJ, Weissman NW, Houston TK. Full implementation of computerized physician order entry and medication-related quality outcomes: a study of 3364 hospitals. Am J Med Qual. Jul-Aug 2009;24(4):278-86. doi:10.1177/1062860609333626
[11]. Nuckols TK, Smith-Spangler C, Morton SC, et al. The effectiveness of computerized order entry at reducing preventable adverse drug events and medication errors in hospital settings: a systematic review and meta-analysis. Syst Rev. Jun 4 2014;3:56. doi:10.1186/2046-4053-3-56
[12]. Georgiou A, Westbrook J, Braithwaite J, Iedema R. Multiple perspectives on the impact of electronic ordering on hospital organisational and communication processes. Health Inf Manag. 2006;34(4):130-5. doi:10.1177/183335830503400406
[13]. Pontefract SK, Coleman JJ, Vallance HK, et al. The impact of computerised physician order entry and clinical decision support on pharmacist-physician communication in the hospital setting: A qualitative study. PLoS One. 2018;13(11):e0207450. doi:10.1371/journal.pone.0207450
[14]. Simon SR, Keohane CA, Amato M, et al. Lessons learned from implementation of computerized provider order entry in 5 community hospitals: a qualitative study. BMC Medical Informatics and Decision Making. 2013/06/24 2013;13(1):67. doi:10.1186/1472-6947-13-67
[15]. Radley DC, Wasserman MR, Olsho LE, Shoemaker SJ, Spranca MD, Bradshaw B. Reduction in medication errors in hospitals due to adoption of computerized provider order entry systems. J Am Med Inform Assoc. May 1 2013;20(3):470-6. doi:10.1136/amiajnl-2012-001241
[16]. Cash JJ. Alert fatigue. American Journal of Health-System Pharmacy. 2009;66(23):2098-2101. doi:10.2146/ajhp090181
[17]. Co Z, Holmgren AJ, Classen DC, et al. The tradeoffs between safety and alert fatigue: Data from a national evaluation of hospital medication-related clinical decision support. J Am Med Inform Assoc. Aug 1 2020;27(8):1252-1258. doi:10.1093/jamia/ocaa098
[18]. Jones CH, Dolsten M. Healthcare on the brink: navigating the challenges of an aging society in the United States. NPJ Aging. Apr 6 2024;10(1):22. doi:10.1038/s41514-024-00148-2
[19]. Underdahl L, Ditri M, Duthely LM. Physician Burnout: Evidence-Based Roadmaps to Prioritizing and Supporting Personal Wellbeing. J Healthc Leadersh. 2024;16:15-27. doi:10.2147/jhl.S389245
[20]. Al-Worafi YM. Healthcare Services in Developing Countries. In: Al-Worafi YM, ed. Handbook of Medical and Health Sciences in Developing Countries : Education, Practice, and Research. Springer International Publishing; 2023:1-21.
[21]. Pavuluri S, Sangal R, Sather J, Taylor RA. Balancing act: the complex role of artificial intelligence in addressing burnout and healthcare workforce dynamics. BMJ Health Care Inform. Aug 24 2024;31(1)doi:10.1136/bmjhci-2024-101120
[22]. Oduoye MO, Fatima E, Muzammil MA, et al. Impacts of the advancement in artificial intelligence on laboratory medicine in low- and middle-income countries: Challenges and recommendations-A literature review. Health Sci Rep. Jan 2024;7(1):e1794. doi:10.1002/hsr2.1794
[23]. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education. 2023/09/22 2023;23(1):689. doi:10.1186/s12909-023-04698-z
[24]. Sallam M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare (Basel). Mar 19 2023;11(6):887. doi:10.3390/healthcare11060887
[25]. Wischmeyer T. Artificial Intelligence and Transparency: Opening the Black Box. In: Wischmeyer T, Rademacher T, eds. Regulating Artificial Intelligence. Springer International Publishing; 2020:75-101.
[26]. Zaman M. ChatGPT for Healthcare Sector: SWOT Analysis. 2023.
[27]. Morita PP, Abhari S, Kaur J, Lotto M, Miranda P, Oetomo A. Applying ChatGPT in public health: a SWOT and PESTLE analysis. Front Public Health. 2023;11:1225861. doi:10.3389/fpubh.2023.1225861
[28]. Kruk ME, Gage AD, Arsenault C, et al. High-quality health systems in the Sustainable Development Goals era: time for a revolution. Lancet Glob Health. Nov 2018;6(11):e1196-e1252. doi:10.1016/s2214-109x(18)30386-3
[29]. Newman-Toker DE, McDonald KM, Meltzer DO. How much diagnostic safety can we afford, and how should we decide? A health economics perspective. BMJ Qual Saf. Oct 2013;22 Suppl 2(Suppl 2):ii11-ii20. doi:10.1136/bmjqs-2012-001616
[30]. Fabre V, Davis A, Diekema DJ, et al. Principles of diagnostic stewardship: A practical guide from the Society for Healthcare Epidemiology of America Diagnostic Stewardship Task Force. Infect Control Hosp Epidemiol. Feb 2023;44(2):178-185. doi:10.1017/ice.2023.5
[31]. O'Sullivan JW, Albasri A, Nicholson BD, et al. Overtesting and undertesting in primary care: a systematic review and meta-analysis. BMJ Open. Feb 11 2018;8(2):e018557. doi:10.1136/bmjopen-2017-018557
[32]. Lippi G, Plebani M. Improving accuracy of diagnostic studies in a world with limited resources: a road ahead. Ann Transl Med. Feb 2016;4(3):43. doi:10.3978/j.issn.2305-5839.2015.11.12
[33]. Takita H, Kabata D, Walston SL, et al. A systematic review and meta-analysis of diagnostic performance comparison between generative AI and physicians. NPJ Digit Med. Mar 22 2025;8(1):175. doi:10.1038/s41746-025-01543-z
[34]. Khosravi M, Zare Z, Mojtabaeian SM, Izadi R. Artificial Intelligence and Decision-Making in Healthcare: A Thematic Analysis of a Systematic Review of Reviews. Health Serv Res Manag Epidemiol. Jan-Dec 2024;11:23333928241234863. doi:10.1177/23333928241234863
[35]. Barwise A, Leppin A, Dong Y, et al. What Contributes to Diagnostic Error or Delay? A Qualitative Exploration Across Diverse Acute Care Settings in the United States. J Patient Saf. Jun 1 2021;17(4):239-248. doi:10.1097/pts.0000000000000817
[36]. Hautz WE, Kämmer JE, Hautz SC, et al. Diagnostic error increases mortality and length of hospital stay in patients presenting through the emergency room. Scand J Trauma Resusc Emerg Med. May 8 2019;27(1):54. doi:10.1186/s13049-019-0629-z
[37]. Cournane S, Conway R, Creagh D, Byrne DG, Sheehy N, Silke B. Radiology imaging delays as independent predictors of length of hospital stay for emergency medical admissions. Clin Radiol. Sep 2016;71(9):912-8. doi:10.1016/j.crad.2016.03.023
[38]. Kim JR, Park TJ, Agapova M, et al. Healthcare resource use and costs associated with the misdiagnosis of migraine. Headache. Jan 2025;65(1):35-44. doi:10.1111/head.14822
[39]. Hirosawa T, Harada Y, Mizuta K, Sakamoto T, Tokumasu K, Shimizu T. Diagnostic performance of generative artificial intelligences for a series of complex case reports. Digit Health. Jan-Dec 2024;10:20552076241265215. doi:10.1177/20552076241265215
[40]. Wiseman V, Mitton C, Doyle-Waters MM, et al. Using Economic Evidence to Set Healthcare Priorities in Low-Income and Lower-Middle-Income Countries: A Systematic Review of Methodological Frameworks. Health Econ. Feb 2016;25 Suppl 1(Suppl Suppl 1):140-61. doi:10.1002/hec.3299
[41]. Ciecierski-Holmes T, Singh R, Axt M, Brenner S, Barteit S. Artificial intelligence for strengthening healthcare systems in low- and middle-income countries: a systematic scoping review. NPJ Digit Med. Oct 28 2022;5(1):162. doi:10.1038/s41746-022-00700-y
[42]. Ahmat A, Okoroafor SC, Kazanga I, et al. The health workforce status in the WHO African Region: findings of a cross-sectional study. BMJ Glob Health. May 2022;7(Suppl 1)doi:10.1136/bmjgh-2021-008317
[43]. Esmaeilzadeh P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine. 2024/05/01/ 2024;151:102861. doi:10.1016/j.artmed.2024.102861
[44]. Rane N, Choudhary S, Rane J. Artificial intelligence for enhancing resilience. Journal of Applied Artificial Intelligence. 09/10 2024;5:1-33. doi:10.48185/jaai.v5i2.1053
[45]. Haykal D, Goldust M, Cartier H, Treacy P. AI in humanitarian healthcare: a game changer for crisis response. Mini Review. Frontiers in Artificial Intelligence. 2025;8:1627773. doi:10.3389/frai.2025.1627773
[46]. Albahri AS, Khaleel YL, Habeeb MA, et al. A systematic review of trustworthy artificial intelligence applications in natural disasters. Computers and Electrical Engineering. 2024/09/01/ 2024;118:109409. doi:10.1016/j.compeleceng.2024.109409
[47]. Tyler S, Olis M, Aust N, et al. Use of Artificial Intelligence in Triage in Hospital Emergency Departments: A Scoping Review. Cureus. May 2024;16(5):e59906. doi:10.7759/cureus.59906
[48]. Hirosawa T, Shimizu T. A Narrative Review of Artificial Intelligence in Medical Diagnostics. Computers, Materials and Continua. 2025/05/19/ 2025;83(3):3919-3944. doi:10.32604/cmc.2025.063803
[49]. Hisashige A. The effectiveness and efficiency of disease management programs for patients with chronic diseases. Glob J Health Sci. Nov 26 2012;5(2):27-48. doi:10.5539/gjhs.v5n2p27
[50]. Brown S, Castelli M, Hunter DJ, et al. How might healthcare systems influence speed of cancer diagnosis: a narrative review. Soc Sci Med. Sep 2014;116(100):56-63. doi:10.1016/j.socscimed.2014.06.030
[51]. Vargas I, Mogollón-Pérez A-S, Eguiguren A, et al. Understanding the health system drivers of delayed cancer diagnosis in public healthcare networks of Chile, Colombia and Ecuador: A qualitative study with health professionals, managers and policymakers. Social Science & Medicine. 11/01 2024;365:117499. doi:10.1016/j.socscimed.2024.117499
[52]. Ilhan B, Guneri P, Wilder-Smith P. The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer. Oral Oncol. May 2021;116:105254. doi:10.1016/j.oraloncology.2021.105254
[53]. Saeidnia HR, Firuzpour F, Kozak M, majd HS. Advancing cancer diagnosis and treatment: integrating image analysis and AI algorithms for enhanced clinical practice. Artificial Intelligence Review. 2025/01/25 2025;58(4):105. doi:10.1007/s10462-025-11117-w
[54]. Chan C, Farias V. The Impact of Delays on Service Times in the Intensive Care Unit. Management Science. 05/31 2016;63doi:10.1287/mnsc.2016.2441
[55]. Cuoco S, Scannapieco S, Carotenuto I, et al. Higher Health Service Costs Associated With Delayed Diagnosis of Functional Neurological Disorder. J Neuropsychiatry Clin Neurosci. Winter 2023;35(1):86-91. doi:10.1176/appi.neuropsych.21110288
[56]. Templin T, Perez MW, Sylvia S, Leek J, Sinnott-Armstrong N. Addressing 6 challenges in generative AI for digital health: A scoping review. PLOS Digit Health. May 2024;3(5):e0000503. doi:10.1371/journal.pdig.0000503
[57]. Reddy S. Generative AI in healthcare: an implementation science informed translational path on application, integration and governance. Implementation Science. 2024/03/15 2024;19(1):27. doi:10.1186/s13012-024-01357-9
[58]. Adams J. Ethical and epistemic implications of artificial intelligence in medicine: a stakeholder-based assessment. AI & SOCIETY. 2025/05/25 2025;doi:10.1007/s00146-025-02398-4
[59]. Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon. Feb 29 2024;10(4):e26297. doi:10.1016/j.heliyon.2024.e26297
[60]. Ueda D, Kakinuma T, Fujita S, et al. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol. Jan 2024;42(1):3-15. doi:10.1007/s11604-023-01474-3
[61]. Fehr J, Citro B, Malpani R, Lippert C, Madai VI. A trustworthy AI reality-check: the lack of transparency of artificial intelligence products in healthcare. Front Digit Health. 2024;6:1267290. doi:10.3389/fdgth.2024.1267290
[62]. Gu Y, You H, Cao J, Yu M. Large Language Models for Constructing and Optimizing Machine Learning Workflows: A Survey. arXiv. 2024;doi:10.48550/arXiv.2411.10478
[63]. Chang Y, Wang X, Wang J, et al. A Survey on Evaluation of Large Language Models. ACM Trans Intell Syst Technol. 2024;15(3):Article 39. doi:10.1145/3641289
[64]. Su W. Do Large Language Models (Really) Need Statistical Foundations? arXiv. 2025;doi:10.48550/arXiv.2505.19145
[65]. Hassija V, Chamola V, Mahapatra A, et al. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cognitive Computation. 2024/01/01 2024;16(1):45-74. doi:10.1007/s12559-023-10179-8
[66]. Marey A, Arjmand P, Alerab ADS, et al. Explainability, transparency and black box challenges of AI in radiology: impact on patient care in cardiovascular radiology. Egyptian Journal of Radiology and Nuclear Medicine. 2024/09/13 2024;55(1):183. doi:10.1186/s43055-024-01356-2
[67]. Hildt E. What Is the Role of Explainability in Medical Artificial Intelligence? A Case-Based Approach. Bioengineering. 2025;12(4):375. doi:10.3390/bioengineering12040375
[68]. Young M, Smith MA. Standards and Evaluation of Healthcare Quality, Safety, and Person-Centered Care. StatPearls. StatPearls Publishing
Copyright © 2025, StatPearls Publishing LLC.; 2025.
[69]. Hanna MG, Pantanowitz L, Jackson B, et al. Ethical and Bias Considerations in Artificial Intelligence/Machine Learning. Modern Pathology. 2025/03/01/ 2025;38(3):100686. doi:10.1016/j.modpat.2024.100686
[70]. Cross JL, Choma MA, Onofrey JA. Bias in medical AI: Implications for clinical decision-making. PLOS Digit Health. Nov 2024;3(11):e0000651. doi:10.1371/journal.pdig.0000651
[71]. Balcan M-F, DeBlasio D, Dick T, Kingsford C, Sandholm T, Vitercik E. How Much Data Is Sufficient to Learn High-Performing Algorithms? Journal of the ACM. 07/29 2024;71doi:10.1145/3676278
[72]. Chen RJ, Wang JJ, Williamson DFK, et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat Biomed Eng. Jun 2023;7(6):719-742. doi:10.1038/s41551-023-01056-8
[73]. Celi LA, Cellini J, Charpignon ML, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities-A global review. PLOS Digit Health. Mar 2022;1(3):e0000022. doi:10.1371/journal.pdig.0000022
[74]. Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: A call for open science. Patterns (N Y). Oct 8 2021;2(10):100347. doi:10.1016/j.patter.2021.100347
[75]. d'Elia A, Gabbay M, Rodgers S, et al. Artificial intelligence and health inequities in primary care: a systematic scoping review and framework. Fam Med Community Health. Nov 2022;10(Suppl 1)doi:10.1136/fmch-2022-001670
[76]. Martin LR, Williams SL, Haskard KB, Dimatteo MR. The challenge of patient adherence. Ther Clin Risk Manag. Sep 2005;1(3):189-99.
[77]. Wu D, Lowry PB, Zhang D, Tao Y. Patient Trust in Physicians Matters-Understanding the Role of a Mobile Patient Education System and Patient-Physician Communication in Improving Patient Adherence Behavior: Field Study. J Med Internet Res. Dec 20 2022;24(12):e42941. doi:10.2196/42941
[78]. Danielson E, Melin-Johansson C, Modanloo M. Adherence to Treatment in Patients with Chronic Diseases: From Alertness to Persistence. Int J Community Based Nurs Midwifery. Oct 2019;7(4):248-257. doi:10.30476/ijcbnm.2019.81303.0
[79]. Religioni U, Barrios-Rodríguez R, Requena P, Borowska M, Ostrowski J. Enhancing Therapy Adherence: Impact on Clinical Outcomes, Healthcare Costs, and Patient Quality of Life. Medicina (Kaunas). Jan 17 2025;61(1):153. doi:10.3390/medicina61010153
[80]. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. Jul 2021;8(2):e188-e194. doi:10.7861/fhj.2021-0095
[81]. Delshad S, Dontaraju VS, Chengat V. Artificial Intelligence-Based Application Provides Accurate Medical Triage Advice When Compared to Consensus Decisions of Healthcare Providers. Cureus. Aug 2021;13(8):e16956. doi:10.7759/cureus.16956
[82]. Hor T, Fong L, Wynne K, Verhoeven B. Easing the cognitive load of general practitioners: AI design principles for future-ready healthcare. Technovation. 2025/04/01/ 2025;142:103208. doi:10.1016/j.technovation.2025.103208
[83]. Da'Costa A, Teke J, Origbo J, Osonuga A, Egbon E, Olawade D. AI-driven triage in emergency departments: A review of benefits, challenges, and future directions. International Journal of Medical Informatics. 02/01 2025:105838. doi:10.1016/j.ijmedinf.2025.105838
[84]. Maleki Varnosfaderani S, Forouzanfar M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering (Basel). Mar 29 2024;11(4):337. doi:10.3390/bioengineering11040337
[85]. Gorrepati L. Integrating AI with Electronic Health Records (EHRs) to Enhance Patient Care. International Journal of Health Sciences. 11/22 2024;7:38-50. doi:10.47941/ijhs.2368
[86]. Ye J, Woods D, Jordan N, Starren J. The role of artificial intelligence for the application of integrating electronic health records and patient-generated data in clinical decision support. AMIA Jt Summits Transl Sci Proc. 2024;2024:459-467.
[87]. Nakikj D, Kreda D, Luthria K, Gehlenborg N. Patient-Generated Collections for Organizing Electronic Health Record Data to Elevate Personal Meaning, Improve Actionability, and Support Patient-Health Care Provider Communication: Think-Aloud Evaluation Study. JMIR Hum Factors. Feb 3 2025;12:e50331. doi:10.2196/50331
[88]. Sutherland K, Levesque JF. Unwarranted clinical variation in health care: Definitions and proposal of an analytic framework. J Eval Clin Pract. Jun 2020;26(3):687-696. doi:10.1111/jep.13181
[89]. Taylor RA, Sangal RB, Smith ME, et al. Leveraging artificial intelligence to reduce diagnostic errors in emergency medicine: Challenges, opportunities, and future directions. Acad Emerg Med. Mar 2025;32(3):327-339. doi:10.1111/acem.15066
[90]. Al Kuwaiti A, Nazer K, Al-Reedy A, et al. A Review of the Role of Artificial Intelligence in Healthcare. J Pers Med. Jun 5 2023;13(6):951. doi:10.3390/jpm13060951
[91]. Sallam M, Mijwil MM, Abotaleb M, Al Sailawi ASA. The Future of Virology Diagnostics Using Wearable Devices Driven by Artificial Intelligence. In: Mzili T, Arya AK, Pamucar D, Shaheen M, eds. Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms, and Applications. IGI Global Scientific Publishing; 2025:473-504.
[92]. AbdulRaheem Y. Unveiling the Significance and Challenges of Integrating Prevention Levels in Healthcare Practice. J Prim Care Community Health. Jan-Dec 2023;14:21501319231186500. doi:10.1177/21501319231186500
[93]. Johnson KB, Wei WQ, Weeraratne D, et al. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. Jan 2021;14(1):86-93. doi:10.1111/cts.12884
[94]. Liu J, Liu Z, Liu C, Sun H, Li X, Yang Y. Integrating Artificial Intelligence in the Diagnosis and Management of Metabolic Syndrome: A Comprehensive Review. Diabetes Metab Res Rev. May 2025;41(4):e70039. doi:10.1002/dmrr.70039
[95]. Raguraj M, Prasad P. AI-Driven Early Detection of Cognitive Decline. International Journal For Multidisciplinary Research. 04/14 2025;7doi:10.36948/ijfmr.2025.v07i02.41426
[96]. Wang F, Wang J-D. Investing preventive care and economic development in ageing societies: empirical evidences from OECD countries. Health Economics Review. 2021/06/04 2021;11(1):18. doi:10.1186/s13561-021-00321-3
[97]. Jayaraman P, S S, Paul S, et al. Artificial intelligence as a proficient tool in detecting pulmonary tuberculosis in massive population screening programs: a case study in Chennai, India. J Rural Med. Jan 2025;20(1):13-19. doi:10.2185/jrm.2024-015
[98]. Hou X, Shen G, Zhou L, Li Y, Wang T, Ma X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front Oncol. 2022;12:851367. doi:10.3389/fonc.2022.851367
[99]. Olawade DB, David-Olawade AC, Wada OZ, Asaolu AJ, Adereni T, Ling J. Artificial intelligence in healthcare delivery: Prospects and pitfalls. Journal of Medicine, Surgery, and Public Health. 2024/08/01/ 2024;3:100108. doi:10.1016/j.glmedi.2024.100108
[100]. Bednar K, Spiekermann S. Eliciting Values for Technology Design with Moral Philosophy: An Empirical Exploration of Effects and Shortcomings. Science, Technology, & Human Values. 2024/05/01 2022;49(3):611-645. doi:10.1177/01622439221122595
[101]. Gerlich M. AI Tools in Society: Impacts on Cognitive Offloading and the Future of Critical Thinking. Societies. 2025;15(1):6. doi:10.3390/soc15010006
[102]. Macnamara BN, Berber I, Çavuşoğlu MC, et al. Does using artificial intelligence assistance accelerate skill decay and hinder skill development without performers' awareness? Cogn Res Princ Implic. Jul 12 2024;9(1):46. doi:10.1186/s41235-024-00572-8
[103]. Novelli C, Taddeo M, Floridi L. Accountability in artificial intelligence: what it is and how it works. AI & SOCIETY. 2024/08/01 2024;39(4):1871-1882. doi:10.1007/s00146-023-01635-y
[104]. Eldakak A, Alremeithi A, Dahiyat E, El-Gheriani M, Mohamed H, Abdulrahim Abdulla MI. Civil liability for the actions of autonomous AI in healthcare: an invitation to further contemplation. Humanities and Social Sciences Communications. 2024/02/23 2024;11(1):305. doi:10.1057/s41599-024-02806-y
[105]. Price WN, 2nd, Gerke S, Cohen IG. Potential Liability for Physicians Using Artificial Intelligence. Jama. Nov 12 2019;322(18):1765-1766. doi:10.1001/jama.2019.15064
[106]. Morley J, Floridi L, Kinsey L, Elhalal A. From What to How: An Initial Review of Publicly Available AI Ethics Tools, Methods and Research to Translate Principles into Practices. Sci Eng Ethics. Aug 2020;26(4):2141-2168. doi:10.1007/s11948-019-00165-5
[107]. Dolatkhah Laein G. Global perspectives on governing healthcare AI: prioritising safety, equity and collaboration. BMJ Lead. Mar 24 2025;9(1):72-75. doi:10.1136/leader-2023-000904
[108]. Bollmeier SG, Griggs S. The Role of Pharmacy Benefit Managers and Skyrocketing Cost of Medications. Mo Med. Sep-Oct 2024;121(5):403-409.
[109]. Gale A. If Pharmacy Benefit Managers Raise Drug Prices, Then Why Are They Needed? Mo Med. Jul-Aug 2023;120(4):243-244.
[110]. Radanliev P. AI Ethics: Integrating Transparency, Fairness, and Privacy in AI Development. Applied Artificial Intelligence. 2025/12/31 2025;39(1):2463722. doi:10.1080/08839514.2025.2463722

Copyright © Creative Commons License Publishing time:2025-02-28
This work is licensed under a Creative Commons Attribution 4.0 International License