AI在传统通信工程里的应用

樊丽军 郭宏斌 陈 晓 宁波华讯通信服务有限公司 浙江 宁波 315000

摘 要:人工智能凭借强大的数据处理与智能决策能力,正深度融入传统通信工程领域。在网络规划优化、故障检测维护等多场景中,AI技术有效提升通信网络性能与服务质量。但应用过程中,数据安全、模型可靠性及人才技术生态等问题也随之凸显。通过分析AI在传统通信工程的应用实践与现存挑战,提出针对性解决策略,为推动通信工程智能化转型、实现可持续发展提供理论参考与实践指导。

关键词: AI; 传统通信工程; 应用

引言

随着5G、物联网等技术的蓬勃发展,传统通信工程 面临更高性能与效率要求。人工智能作为前沿技术,其 机器学习、深度学习算法在数据挖掘、模式识别等方面 优势显著,为通信工程变革带来新契机。本文聚焦AI与 传统通信工程融合,深入探讨AI在网络规划优化、故障 处理等环节的具体应用,分析应用过程中面临的挑战, 并提出应对策略,旨在为通信工程智能化升级提供理论 支撑与实践方向。

1 AI 与传统通信工程概述

1.1 AI

人工智能(AI)是融合计算机科学、统计学、数学 等多学科知识的前沿技术领域,旨在构建具备感知、学 习、推理与决策能力的智能系统。其核心技术涵盖机器 学习、深度学习、自然语言处理与计算机视觉等方向, 通过海量数据驱动的算法模型模拟人类认知过程。机器 学习作为AI的基石,利用分类、回归、聚类等算法挖掘 数据特征, 使模型能够从经验中自主优化性能; 深度学 习依托多层神经网络架构, 在图像识别、语音识别领域 取得突破性进展,通过卷积神经网络(CNN)和循环神 经网络(RNN)等结构自动提取数据深层特征。随着 Transformer架构的出现, AI在自然语言处理领域实现跨 越式发展,大语言模型通过自注意力机制高效处理长序 列文本,展现出强大的上下文理解与生成能力。AI技术 正广泛应用于医疗影像诊断、自动驾驶、智能推荐等领 域,通过数据驱动的智能决策提升系统自动化与智能化 水平, 重塑各行业技术架构与业务模式。

1.2 传统通信工程

传统通信工程以香农信息论为理论基础,围绕信息 的传输、交换与处理构建通信系统,实现不同节点间可 靠的数据传递。其核心要素包括信源编码、信道编码、 调制解调及传输媒介,通过物理层、数据链路层等协议栈完成信号的数字化、纠错编码、频谱变换与传输控制。有线通信依托同轴电缆、光纤等介质,利用光信号或电信号的物理传输特性实现低损耗、高带宽的数据传输,其中光纤通信凭借光载波的高速率与低衰减优势,成为骨干网络的核心传输方式;无线通信则通过电磁波在自由空间传播,借助蜂窝网络、卫星通信等技术实现广域覆盖,GSM、CDMA等移动通信标准定义了空中接口规范,保障终端设备的互联互通。传统通信工程在构建固定电话网、广播电视网与早期互联网中发挥关键作用,通过网络拓扑优化、信道复用技术提升系统容量与传输效率,其分层架构与标准化协议体系为现代通信网络奠定坚实基础,是实现全球信息互联的核心支撑技术。

2 AI 在传统通信工程中的具体应用

2.1 网络规划与优化

(1) 在网络规划环节, AI可凭借机器学习算法对海 量历史数据及当下网络状况数据展开深度剖析。例如, 通过分析不同区域在不同时段的通信流量需求, AI能 够精准预测未来流量走势, 进而为基站的合理布局提供 科学依据。以某城市商业区为例, AI分析发现工作日白 天该区域通信流量远超夜间, 且特定时段会出现流量高 峰,基于此,可在该区域针对性地增设基站或提升基站 性能,以满足高峰时段的通信需求。(2)针对网络优 化,AI可利用强化学习动态调整网络参数。比如,对无 线通信网络中的信号发射功率、信道分配等参数进行实 时优化。当检测到某一区域信号干扰严重时, AI算法能 自动调整信号发射功率和信道,避开干扰源,保障通信 质量,有效提升网络整体的稳定性与通信效率。(3)借 助深度学习中的卷积神经网络, AI还能对网络覆盖情况 进行精确模拟与分析。通过构建网络环境模型,AI可识 别出信号覆盖薄弱区域, 助力工程师制定更为有效的网 络优化方案,如调整天线方向、增加信号放大器等,以 扩大网络覆盖范围,减少信号盲区^[1]。

2.2 故障检测与维护

(1) 在故障检测方面, AI能够基于大量的网络运行 数据构建故障预测模型。运用长短期记忆网络(LSTM) 等技术,对设备的运行状态数据进行持续监测与分析, 提前察觉设备潜在的故障隐患。例如,通过监测通信基 站设备的温度、电压、电流等参数变化趋势,LSTM模型 可预测设备是否可能在短期内出现过热、短路等故障, 从而实现提前预警。(2)当故障发生后,AI可利用图 神经网络(GNN)快速定位故障位置。GNN通过对网络 拓扑结构以及各节点之间的关联关系进行建模,结合实 时采集的故障数据,能够迅速识别出故障发生的具体节 点或链路。比如在复杂的通信网络中, 当出现信号中断 故障时, GNN可在短时间内准确判断出是哪一个基站、 哪一条传输线路出现问题,大大缩短故障排查时间。 (3) 在故障维护阶段, AI还可依据故障类型与过往维护 经验,生成最优的故障解决方案。通过对大量历史故障 案例及对应解决方案的学习, AI能够针对不同的故障场 景,给出详细的维修步骤建议,指导维修人员快速有效 地修复故障,提升故障处理效率,降低通信中断带来的 损失。

2.3 资源分配与调度

(1) AI可运用深度强化学习算法实现通信资源的智 能分配。在多用户、多业务的通信场景下,深度强化学 习能够综合考量用户需求、业务优先级、网络资源状况 等多方面因素, 动态分配频谱、带宽、计算资源等。例 如,对于实时性要求较高的视频通话业务,优先分配高 质量的频谱资源与较大带宽,保障通话质量;对于普通 的数据传输业务,则根据其流量需求灵活分配资源,提 升资源利用效率。(2)基于机器学习的预测模型, AI能 够提前预估不同业务在不同时段的资源需求。通过分析 历史业务数据, 预测未来业务流量变化, 提前为高需求 时段准备充足的资源,避免出现资源短缺导致的通信质 量下降。如在视频直播高峰期,提前为直播平台分配更 多的网络带宽与计算资源,确保直播的流畅性。(3)在 资源调度过程中, AI可实时监测网络状态, 根据网络负 载情况动态调整资源分配策略。当发现某一区域网络负 载过高时, AI可自动将部分业务流量调度至负载较低的 区域,实现网络负载的均衡分布,提升整个网络的运行 效率,避免因局部负载过高导致网络拥塞甚至瘫痪[2]。

2.4 智能通信服务

(1) 在智能语音通信方面, AI的语音识别与合成技

术发挥着关键作用。语音识别技术通过深度学习算法, 能够准确将用户的语音转换为文字, 识别准确率不断提 高。例如,在智能客服场景中,客户的语音咨询可被快 速准确识别并转化为文本,进而由AI客服系统进行智 能回复;语音合成技术则能将文本信息转化为自然流畅 的语音,为用户提供语音播报服务,如导航系统中的语 音导航提示。(2)对于图像通信,AI的图像识别与处 理技术可对传输的图像进行优化与分析。图像识别技术 能够快速识别图像中的物体、场景等信息,如在安防监 控系统中, AI可实时识别监控画面中的异常行为或危险 物品;图像增强、去噪等处理技术则可提升图像在传输 过程中的质量,减少因噪声、干扰等因素导致的图像失 真,确保图像信息的清晰传递。(3)在通信内容推荐方 面,AI通过对用户的通信行为、偏好等数据进行分析, 为用户提供个性化的通信服务推荐。例如,根据用户经 常拨打的号码、参与的通信群组、浏览的信息内容等, AI可向用户推荐可能感兴趣的联系人、通信群组或相关 资讯,提升用户的通信体验与服务满意度。

3 AI 在传统通信工程应用中面临的挑战与对策

3.1 面临的挑战

3.1.1 数据安全与隐私保护问题

在传统通信工程引入AI技术的过程中,数据安全与隐私保护面临严峻考验。通信系统日常运行产生海量数据,涵盖用户通信内容、网络流量信息、设备状态参数等敏感数据,这些数据一旦泄露,将对用户隐私、企业运营甚至国家安全造成严重威胁。AI模型训练与应用依赖大量数据输入,数据在采集、传输、存储和处理等环节都存在被窃取、篡改的风险。攻击者可能利用通信网络漏洞,非法获取训练数据,导致模型学习到错误信息,影响通信系统正常运行。数据在多方协作场景下的共享与交互,进一步增加了数据泄露风险,传统加密技术在应对复杂攻击手段时存在局限性,难以保障数据全生命周期的安全性。

3.1.2 模型可靠性与可解释性不足

AI模型在传统通信工程中的可靠性与可解释性不足,成为制约其广泛应用的关键因素。通信网络环境复杂多变,存在噪声干扰、信号衰落、突发故障等情况,AI模型需要具备在恶劣条件下稳定运行的能力。现有AI模型如深度学习模型,结构复杂,在处理通信信号时,容易出现过拟合、欠拟合现象,导致模型泛化能力差,在实际通信场景中的预测与决策准确率难以保证。这些模型通常被视为"黑盒",其内部决策过程和逻辑难以被直观理解,通信工程师无法知晓模型做出特定决策的依据,

当模型出现错误时,难以快速定位问题根源并进行优化,极大地限制了模型在通信系统关键环节中的应用^[3]。

3.1.3 人才与技术生态不完善

AI与传统通信工程融合所需的复合型人才短缺,技术生态尚未健全。传统通信工程人才虽精通通信原理与网络架构,但对AI算法、数据处理等知识掌握有限;AI专业人才缺乏通信领域的专业背景,难以将AI技术精准应用于通信工程实际场景。这种人才结构的断层,导致在AI与通信融合项目中,难以实现技术的高效落地与创新发展。技术生态方面,缺乏统一的开发标准与协作平台,不同企业、机构开发的AI通信技术与工具兼容性差,无法形成协同效应。AI开源社区在通信工程领域的资源相对匮乏,技术交流与共享渠道不畅,阻碍了新技术的快速迭代与推广应用。

3.2 对策

3.2.1 加强数据安全与隐私保护

为保障传统通信工程中AI应用的数据安全与隐私, 需从技术层面构建多层防护体系。在数据采集阶段,采 用差分隐私技术,通过添加可控噪声对原始数据进行扰 动,在不影响数据可用性的前提下,保护数据的个体隐 私信息。传输过程中,利用同态加密算法,允许数据在 加密状态下进行计算与处理,避免数据明文传输带来的 泄露风险。在存储环节,结合区块链技术,实现数据的 分布式存储与管理,利用区块链的去中心化、不可篡改 特性,确保数据存储的安全性与完整性。通过建立数据 安全监测与预警机制,实时监控数据访问与使用行为, 及时发现并阻断异常操作,有效防范数据安全威胁。

3.2.2 提升模型可靠性与可解释性

提升AI模型在传统通信工程中的可靠性与可解释性,需要采用创新的技术方法与模型架构。针对模型可靠性问题,引入强化学习算法,通过构建通信网络环境模拟场景,让模型在不断试错与优化过程中,学习适应复杂多变的通信条件,增强模型的鲁棒性与泛化能力。在模型训练过程中,运用数据增强技术,对原始通信数据进行多样化处理,增加数据样本的丰富性,降低模型

过拟合风险。对于可解释性问题,采用可解释AI(XAI)技术,如基于规则的模型、注意力机制可视化等方法,将模型的决策过程转化为通信工程师易于理解的形式,帮助其分析模型行为,验证决策合理性,便于及时发现模型潜在问题并进行改进优化。

3.2.3 完善人才培养与技术生态建设

推动AI与传统通信工程深度融合,需要完善人才培养与技术生态建设。企业与科研机构可联合开展项目实践,为人才提供AI通信技术的实战平台,促进通信专业人才与AI人才在项目合作中相互学习、交流,培养既懂通信原理又熟悉AI技术的复合型人才。在技术生态方面,搭建开放的AI通信技术开发与共享平台,制定统一的数据接口与开发规范,促进不同技术与工具之间的兼容与协同。鼓励企业与高校、科研院所共建AI通信开源社区,共享技术成果、数据集与开发经验,形成良好的技术创新与交流氛围,加速新技术的孵化与应用推广,推动AI在传统通信工程领域的生态繁荣[4]。

结语

综上所述,AI与传统通信工程的融合已展现出巨大潜力,在网络优化、故障处理等多方面提升通信工程效能。然而,数据安全、模型可靠性及人才技术生态等挑战仍制约其进一步发展。未来,需持续加强数据安全防护,提升模型可解释性与可靠性,完善人才培养体系与技术生态建设,推动AI与传统通信工程更深度融合,助力通信行业向智能化、高效化方向迈进。

参考文献

[1]刘雅琼,吕哲,赵亚飞,等.AI技术在卫星通信/互联网领域的应用综述[J].电信科学,2023,39(2):10-24.

[2]林骁玮.AI在现代通信中的应用与挑战分析[J].科技风,2020(15):105.

[3]魏兴光,刘静,陈嘉君,等.AI在无线通信系统中的应用[J].中兴通讯技术,2024,30(4):26-31.

[4]谢李明.浅析AI在现代通信中的应用与挑战[J].计算机产品与流通,2020(12):46+51.