探析地铁通信工程施工全过程管理

魏海军 徐州地铁运营有限公司 江苏 徐州 221000

摘 要: 地铁通信工程是保障地铁安全高效运营的核心支撑,承担着调度指挥、信息传输、应急响应等关键功能,其施工质量直接关系到地铁系统的稳定性与乘客出行安全。本文聚焦地铁通信工程施工全过程管理,剖析施工前技术、物资、人员及现场准备工作的要点,指出施工中存在技术适配性不足、质量控制漏洞、进度协调困难、安全风险突出及成本控制精度不足等问题。针对这些问题,提出强化技术论证、构建全流程质量管控体系、优化进度协同、落实安全责任、精细化成本控制及推进信息化管理等策略,为提升地铁通信工程施工管理水平提供参考,旨在保障工程质量与效率,促进地铁通信系统稳定运行。

关键词: 地铁通信; 工程施工; 全过程管理

引言:随着城市轨道交通快速发展,地铁通信工程作为地铁安全高效运行的关键支撑,其施工全过程管理的重要性愈发凸显。地铁通信工程具有技术密集、施工复杂、涉及面广等特点,施工管理质量直接影响通信系统功能发挥。本文从施工前的准备工作入手,深入分析施工全过程管理中存在的问题,并探索针对性解决策略,以期为相关工程实践提供理论指导,推动地铁通信工程施工管理规范化、精细化,确保工程顺利实施,满足地铁运营对通信系统的高可靠性要求。

1 地铁通信工程施工前的准备工作

1.1 技术准备

技术准备是施工前的核心环节,需组织技术团队深入研读设计图纸,结合地铁线路特点、周边环境及通信系统功能需求,开展图纸会审与技术交底。重点核查通信设备接口兼容性、传输网络架构合理性及应急通信方案可行性,编制详细的施工技术方案与作业指导书。同时,需完成施工模拟推演,预判技术难点并制定应对措施,如信号干扰解决方案、复杂地质条件下的线缆敷设工艺等,确保技术方案符合工程实际且具备可操作性。

1.2 物资准备

物资准备需依据施工进度计划与技术方案,精准核算通信设备、线缆、辅材等物资的规格、数量及进场时间。建立物资采购台账,选择具备资质与口碑的供应商,签订采购合同并明确质量标准与交付期限。进场前需对物资进行严格检验,包括设备参数校验、线缆性能测试及材料合格证核查,杜绝不合格物资流入施工现场。此外,需规划专用物资存放区域,做好防潮、防尘、防盗等防护措施,建立物资领用登记制度,确保物资管理规范有序。

1.3 人员准备

人员准备需组建专业施工团队,涵盖技术人员、施工人员、质量监督员及安全管理员等,明确各岗位职责与分工。对施工人员开展岗前培训,内容包括施工技术规范、安全操作流程、设备安装标准及应急处置预案等,考核合格后方可上岗。同时,需配备足够的技术骨干,确保关键工序施工质量,建立人员考勤与绩效管理制度,激发团队工作积极性,形成"技术过硬、责任明确、协作高效"的施工队伍。

1.4 现场准备

现场准备需提前完成施工区域勘察,清理场地障碍物,划分作业分区与材料堆放区,设置安全警示标识。协调地铁土建施工单位,确定通信设备机房、线缆敷设路径等关键位置的交接时间,完成场地平整度修整与临时用电、用水设施搭建。此外,需搭建临时指挥调度中心,配备通信、监控等设备,建立现场协调机制,与监理单位、建设单位及其他施工标段保持实时沟通,确保施工场地条件满足开工要求,减少交叉作业干扰^[1]。

2 地铁通信工程施工全过程管理存在的问题

2.1 技术适配性不足

技术适配性不足是地铁通信工程施工中的突出问题。一方面,部分工程采用的通信设备与既有线路系统兼容性差,如传输协议不匹配、接口标准冲突,导致设备安装后无法正常联网,需反复调试甚至更换设备。另一方面,施工技术与现场环境适配度低,例如在地下潮湿环境中沿用常规线缆敷设工艺,易引发信号衰减或短路故障;面对复杂地质条件时,传统布线技术难以满足抗干扰要求,导致通信质量不稳定。此外,新技术应用缺乏充分验证,如盲目引入新型专网通信技术但未完

成与地铁调度系统的适配测试,造成功能闲置或系统冲突,严重影响施工进度与后期运营稳定性。

2.2 质量控制存在漏洞

质量控制漏洞贯穿施工全流程。材料进场验收环节,部分工程未严格执行抽样检测制度,使不合格线缆、接头等流入施工环节,为通信系统埋下隐患。施工工序管控不严,如线缆接续工艺不规范、设备安装精度超标等问题,在隐蔽工程验收中被忽视,导致后期调试时出现信号中断、误码率过高等现象。质量检测标准不统一,不同施工班组对通信设备调试参数的把控存在差异,且第三方检测环节流于形式,未能及时发现光纤熔接损耗超标、接地电阻不合格等隐性问题。此外,验收文档记录不完整,关键测试数据缺失,难以追溯质量问题根源,增加后期维护难度。

2.3 进度管理协调困难

进度管理面临多维度协调障碍。地铁通信工程与土建、机电等多专业交叉作业频繁,但各标段缺乏统一进度管控机制,如土建施工延误导致通信机房交付滞后,直接压缩通信设备安装时间。外部环境影响应对不足,管线迁改、交通管制等突发情况常打乱施工计划,而应急调整方案缺失,造成工期被动拖延。内部工序衔接不畅,例如线缆敷设与设备安装班组未同步衔接,前道工序完成后未能及时通知后道工序进场,形成施工空档期。此外,进度跟踪依赖人工报表,数据更新滞后,难以实时掌握各作业面进展,导致管理层无法及时发现进度偏差并调整,最终引发整体工期延误。

2.4 安全管理风险突出

安全管理风险体现在多个层面。施工人员安全意识薄弱,违规操作现象频发,如未佩戴绝缘防护用具进行带电作业、高空架设设备时未落实防坠落措施等,易引发触电、坠落等安全事故。现场安全防护设施不完善,临时用电线路乱拉乱接、消防器材配置不足,且深基坑、有限空间等危险区域未设置强制警示标识,增加意外发生概率。安全培训针对性不足,多为通用性理论讲解,未结合地铁通信施工特点开展专项应急演练,导致施工人员面对线缆短路起火、有害气体泄漏等突发情况时,自救与处置能力欠缺。此外,安全检查存在形式化,对通信机房动火作业等高危环节监管不到位,埋下安全隐患。

2.5 成本控制精度不足

成本控制存在明显的粗放化问题。前期预算编制缺乏精细化测算,对通信设备市场价格波动、特殊施工工艺增量成本预估不足,导致预算与实际支出偏差较大。

材料管理浪费严重,线缆裁切时未精准核算长度造成余料积压,辅材领用无严格限额,出现多领、错领现象,直接增加材料成本。人工成本管控松散,部分工序因技术交底不清导致返工,额外消耗工时;非生产人员占比过高,窝工现象时有发生,造成人力成本虚增。此外,变更签证管理不规范,施工过程中随意变更设备型号或施工方案,且未及时办理签证手续,导致结算时成本核算混乱,超支风险加剧[2]。

3 地铁通信工程施工全过程管理的相关策略

3.1 强化技术可行性论证

强化技术可行性论证需构建全周期技术评估体系,从源头降低适配风险。前期需开展多维度调研,结合地铁线路运营需求、地质环境特征及既有通信系统参数,形成详细的技术需求报告,明确设备兼容性、抗干扰能力等核心指标。方案设计阶段引入跨专业评审机制,组织通信技术专家、地铁调度人员及施工团队共同参与,重点核查设备选型与传输协议的匹配性,如验证新型专网设备与既有调度系统的接口兼容性,确保技术标准统一。针对特殊施工环境,需进行专项技术模拟测试,例如在潮湿隧道环境中对不同防护等级的线缆进行为期3个月的耐候性试验,筛选出适配的敷设工艺;通过三维建模拟复杂地质条件下的信号传输路径,优化布线方案以降低干扰。新技术应用前需建立试点验证机制,选取典型区间进行小范围试装,测试其与供电系统、安防系统的协同性,待各项参数达标后再全面推广。

3.2 构建全流程质量管控体系

构建全流程质量管控体系需覆盖从材料进场到竣工 验收的各个环节。材料管控环节,实行 "双检制",供 应商需提供完整的质量合格证明,项目方按规范进行抽 样检测,重点核查线缆衰减率、设备防护等级等关键指 标,对不合格材料建立黑名单制度,杜绝二次进场。施 工过程中推行 "工序质量签证制",每道工序完成后, 由施工班组自检、技术负责人复检、监理单位终检,三 方确认合格后方可进入下道工序,尤其强化隐蔽工程验 收,如线缆埋深、接地装置安装等需留存影像资料备 案。建立统一的质量检测标准库,明确通信设备调试参 数、光纤熔接损耗阈值等量化指标,配备智能化检测设 备实时采集数据,确保检测结果客观可追溯。引入第三 方独立检测机构,在设备联调阶段开展全系统性能测 试,重点验证通信中断告警响应时间、数据传输稳定性 等核心功能。

3.3 优化进度协同管理

优化进度协同管理需搭建多维度协同机制, 打破各

参与方的信息壁垒。建立跨标段联合调度中心,由建设 单位牵头,每周组织土建、机电、通信等施工方召开进 度协调会,同步更新各专业施工节点,明确通信工程与 其他工序的衔接界面,例如提前30天确定机房交付时 间,为设备安装预留缓冲期。针对交叉作业区域,制定 详细的施工顺序表,采用"空间分段、时间错峰"模 式,如上午安排土建单位进行隧道清理,下午同步开展 通信线缆敷设,减少工序冲突。建立突发情况应急响应 体系, 预设管线迁改、天气影响等场景的进度调整方 案,储备备用施工队伍和应急物资,确保延误发生时能 快速补位。引入 BIM 技术构建 4D 进度模型, 实时关联 施工计划与现场进度数据,通过可视化模拟提前预警工 序脱节风险, 如发现线缆敷设进度滞后时, 自动推送协 调指令至相关班组。同时,推行 "工序交接单" 制度, 前道工序完成后需经监理确认并同步至后道工序班组, 明确交接时间、质量状态等信息,避免出现施工空档, 通过全链条协同提升进度管控效率。

3.4 落实安全管理责任

落实安全管理责任需构建 "全员参与、分级负责" 的责任体系。首先明确责任划分,建立以项目经理为第 一责任人、安全监督员专项负责、施工班组组长直接管 控的三级责任架构,将安全责任细化到每个岗位,签订 安全责任书并纳入绩效考核,对违规操作实行 "一票 否决"。强化安全培训针对性,根据不同施工环节风险 特点开展专项培训, 如带电作业人员需通过电工相关操 作考核, 高空作业人员需掌握防坠落装备使用规范, 培 训后进行实操演练,确保技能达标。现场安全管控实施 "双巡查" 制度,安全监督员每2小时巡查一次,重点检 查临时用电线路、消防设施及防护装备配备情况,施工 班组实行 "班前安全交底、班后隐患排查",对发现的 问题立即整改并记录备案。针对高风险作业环节, 如有 限空间通信设备安装,需执行"作业许可制度",提前 检测空间内气体浓度,配备通风设备和应急救援物资, 明确监护人员职责,确保全过程可控。

3.5 精细化成本控制

精细化成本控制需建立全流程成本动态管控机制。 预算编制阶段,采用"工程量清单+市场询价"双维度 核算模式,细化通信设备、辅材等各项成本指标,结合施工方案测算工序成本,预留 10% 应急费用应对突发支出。材料管理实行"限额领料"制度,根据施工进度分解材料用量,建立电子台账实时跟踪领用数据,对超量领用实行审批制并分析原因,同时开展余料回收利用,降低浪费率。施工过程中推行"成本预警机制",通过BIM 技术关联工程量与成本数据,当某工序支出超预算10%时自动预警,及时核查是否存在工艺浪费或材料损耗超标问题。人工成本管控采用"计件考核"模式,明确各岗位工时定额,减少窝工现象。

3.6 推进信息化管理应用

推进信息化管理应用需构建一体化管理平台,整合施工全流程信息资源。搭建涵盖技术、质量、进度、安全、成本等模块的数字化管理系统,实现各环节数据实时互通,取代传统纸质台账,提升信息流转效率。建立云端协同平台,支持施工各方在线共享图纸变更、工序验收等关键信息,减少沟通壁垒。通过移动端应用实现现场数据实时上传,如施工人员可随时录入设备安装参数、质量检测结果,管理人员通过后台实时查看,及时发现问题并下达调整指令。引入物联网技术对关键设备状态进行远程监控,实时掌握设备运行参数及施工环境变化,提前预警潜在风险^[3]。

结束语

地铁通信工程施工全过程管理是保障地铁高效安全运营的关键。通过扎实的施工前准备,针对性解决技术、质量、进度等问题,落实强化技术论证、构建质量管控体系等策略,可显著提升管理水平。随着信息化技术的融入,管理模式不断优化,能更好应对复杂挑战。未来需持续完善管理机制,推动地铁通信工程施工管理高质量发展,为城市轨道交通顺畅运行筑牢通信保障基石。

参考文献

- [1]王振朴.地铁供电系统安装工程施工优化管理探究 [J].中国设备工程,2020(01):95-97.
- [2]杨发滔,陈志远,许金峰.地铁轨道工程施工质量控制与管理[J].现代城市轨道交通,2022(12):52-55.
- [3] 扈晨飞.地铁机电设备安装工程施工管理策略[J]. 中国设备工程,2021(22):211-212.