网络运维管理系统优化建议

黄金东

江苏州维通信科技有限公司 江苏 扬州 225000

摘 要:网络运维管理系统是企业网络稳定运行的核心保障,具备设备监测、性能分析、故障预警及安全防护等功能。当前部分系统存在技术架构陈旧、功能模块协同性差、运维流程不规范等问题,制约了网络管理效率。针对这些痛点,可通过升级技术架构(引入分布式、云计算等)、增强模块协同(建立数据共享平台等)、规范运维流程及强化安全管理等措施优化。优化后能提升系统实时性、扩展性与安全性,减少故障影响,保障企业业务持续运转。

关键词: 网络运维; 管理系统; 优化建议

引言

在数字化时代,网络成为企业运营的关键支撑,网络运维管理系统的效能直接影响企业业务连续性。然而,随着网络规模扩大与技术迭代,现有系统在架构适应性、模块协作及流程规范等方面逐渐显现不足,难以应对复杂网络环境需求。本文基于系统现状,分析技术、功能及流程层面的问题,提出针对性优化建议,旨在为提升网络运维管理水平提供思路,助力企业构建更稳定、高效、安全的网络环境。

1 网络运维管理系统概述

在当今数字化浪潮中, 网络已然成为企业运营的核 心命脉,稳定、高效的运行对于企业发展的重要性不言 而喻。网络运维管理系统作为保障网络顺畅运转的关键 利器,应运而生并不断演进。网络运维管理系统犹如一 位智慧的网络守护贤者,全面且精细地打理着企业网络 基础设施的各项事务。它能实时监测网络设备,从核心 的服务器、路由器,到分布各处的交换机等,将这些设 备的运行状态尽收眼底,就像为运维人员配备了一个能 透视网络的 洞察神器。通过持续收集设备的各类运行数 据,系统能对网络性能进行精准分析,比如敏锐洞察带 宽利用率是否过高、丢包率是否异常,以及延迟是否在 合理范围之内等。一旦发现网络存在异常,它会迅速拉 响警报,及时通知运维人员,助力他们快速定位问题根 源,并提供有效的解决方案,极大地减少网络故障对企 业业务的影响时长。在安全管理方面,该系统更是筑起 了一道坚固的网络防线。它具备强大的入侵检测能力, 能够实时识别并抵御潜在的网络攻击,同时灵活支持防 火墙的配置与管理,帮助企业依据自身需求制定并严格 执行安全策略,全方位确保网络数据的机密性、完整性 和可用性,有效保护企业的核心数据资产不被窃取或破 坏。网络运维管理系统还能对网络设备的配置变更进行 详尽记录,形成清晰的配置变更历史档案,让运维人员对网络配置的每一次变动都了如指掌,确保网络配置的一致性与可追溯性。借助配置审计功能,管理员可轻松了解网络设备的配置详情,及时发现并纠正可能存在的配置错误,为网络的稳定运行夯实基础。

2 网络运维管理系统现状分析

2.1 技术架构相对陈旧

当下, 部分网络运维管理系统仍依托早期构建的技 术架构,这些架构在设计之初,主要面向当时相对简单 的网络环境与业务需求。随着时间推移, 网络规模呈几 何倍数扩张,新的应用场景与业务类型不断涌现,旧有 技术架构在应对这些变化时,逐渐力不从心。以数据处 理能力为例, 传统架构多采用集中式的数据存储与处理 模式, 所有数据汇聚于中心节点进行分析运算。在网络 数据量有限时,这种模式尚可维持。然而,如今网络中 每秒产生的数据量巨大,集中式架构下中心节点负载过 重,数据处理速度严重滞后,导致对网络状态的实时监 测与分析难以实现。比如在网络高峰时段,对网络流量 的分析结果往往延迟数分钟甚至更长时间才得出,此时 网络中的异常状况可能已造成较大影响,运维人员却无 法及时察觉。在扩展性方面, 传统架构犹如固定框架的 建筑,难以灵活添加新的功能模块或适应新的网络设备 接入。当企业引入新型网络技术,如5G边缘计算设备 时,旧有系统架构无法快速适配,需要进行大规模的底 层代码修改与架构调整,不仅耗时费力,还可能因兼容 性问题引发新的故障[1]。这种滞后性使得企业在享受新技 术带来的优势时, 面临重重阻碍, 难以跟上数字化发展 的步伐。

2.2 功能模块协同性差

网络运维管理系统通常涵盖多个功能模块,如设备 监控、性能分析、故障诊断、安全管理等。理想状态

下,这些模块应紧密协作,如同交响乐团的各个声部, 共同奏响网络稳定运行的和谐乐章。实际情况是,许多 系统的功能模块之间协同性欠佳。设备监控模块主要负 责实时采集网络设备的运行参数,如CPU使用率、内存 占用等。性能分析模块则侧重于对网络整体性能指标, 如带宽利用率、延迟等进行评估。然而,在一些系统 中,这两个模块仿佛处于各自独立的孤岛。设备监控模 块发现某台核心交换机CPU使用率持续过高,但由于与 性能分析模块缺乏有效联动, 无法及时结合当前网络性 能状况,分析该高CPU使用率是否已对网络整体性能造 成影响,以及影响的范围和程度。这就导致运维人员在 面对设备异常时,难以快速准确地判断其对网络全局的 危害,可能延误故障处理的最佳时机。再看故障诊断与 安全管理模块。当安全管理模块检测到网络遭受疑似 DDoS 攻击时, 它未能及时将相关信息高效传递给故障诊 断模块, 以便其结合网络故障现象进行综合分析。故障 诊断模块依旧按照常规流程,对网络中可能出现的硬件 故障、配置错误等进行排查,却忽略了正在发生的安全 威胁, 使得故障排查方向出现偏差, 增加了故障定位与 解决的难度,延长了网络故障的持续时间,给企业业务 带来不必要的损失。

2.3 运维流程不够规范

在网络运维实践中, 缺乏规范的运维流程如同没有 交通规则的城市街道,极易引发混乱与低效。部分企业 在网络运维过程中,没有建立一套标准化、精细化的操 作流程。当网络出现故障时,不同运维人员的处理方式 可能大相径庭[2]。有的运维人员凭借个人经验,从最可 能出现问题的环节入手排查;有的运维人员则缺乏系统 的排查思路, 盲目尝试各种方法, 导致故障排查过程冗 长且无序。例如, 在处理网络中断故障时, 有的运维人 员可能直接检查网络线缆连接, 而忽略了对网络配置、 路由状态等其他关键因素的排查, 使得故障根源迟迟无 法找到。在故障处理流程中,各环节之间的衔接也存在 诸多问题。故障上报环节,可能由于缺乏明确的上报标 准与渠道,导致故障信息传递不及时、不准确。例如, 一线运维人员发现网络故障后,不知道该向哪个具体部 门或负责人汇报,或者在汇报时未能清晰描述故障现象 与影响范围, 使得上级部门在接到故障报告后, 无法快 速做出准确判断与决策。故障处理过程中的协作同样混 乱,不同专业领域的运维人员之间缺乏有效的沟通与协 调机制,各自为战,无法形成高效的故障处理合力,严 重影响了故障处理的效率与质量,给企业网络的稳定运 行带来极大挑战。

3 网络运维管理系统优化建议

3.1 升级技术架构

(1)引入分布式与云计算架构。利用分布式技术, 把数据存储与处理分散到多个节点, 防止中心节点负载 超负荷。以网络流量监测数据处理为例,采用分布式计 算框架,各节点并行作业,大幅提升数据处理速度,可 实时精准掌握网络状态。融入云计算架构,借助云平台 弹性计算与存储资源, 能轻松应对网络规模扩张和业务 高峰的资源需求。企业可依业务量灵活调配云资源,增 强系统扩展性与灵活性。(2)应用大数据与人工智能技 术。大数据技术可深度挖掘与分析海量网络运行数据, 通过收集网络设备多年性能、故障记录等资料,运用大 数据分析算法,精准定位网络潜在问题与性能瓶颈,为 网络优化提供坚实依据。引入人工智能技术,以机器学 习算法开展网络故障预测, 让模型学习海量历史故障数 据,自动识别可能引发故障的异常模式并提前预警,推 动运维从被动应对转为主动预防,降低网络故障风险[3]。 (3) 采用微服务架构。将网络运维管理系统拆分为多个 独立的微服务模块,每个模块专注特定功能,如设备监 控微服务、性能分析微服务等。各微服务可独立开发、 部署与升级, 互不干扰。当需要添加新功能或优化现有 功能时,只需对相应微服务进行操作,无需改动整个系 统架构,极大提高开发效率与系统的可维护性,还能根 据业务需求灵活组合微服务,满足多样化业务场景。

3.2 增强功能模块协同性

(1)建立统一数据共享平台。将设备监控、性能分 析、故障诊断、安全管理等各功能模块采集的数据汇总 至统一平台。各模块从该平台获取所需数据,保证数据 一致性与实时性。例如,性能分析模块可实时获取设备 监控模块采集的设备运行参数,结合网络性能指标进行 综合分析,准确判断设备状态对网络整体性能的影响, 为运维决策提供全面数据支持。(2)设计模块间联动机 制。当设备监控模块检测到设备异常,如某路由器温度 过高,立即向故障诊断模块发送异常信息。故障诊断模 块结合自身算法与其他相关数据, 快速定位故障原因。 安全管理模块若发现网络攻击迹象,及时将信息传递给 设备监控与故障诊断模块,协同排查攻击对设备与网络 的影响,实现各模块紧密协作,提升故障处理效率与准 确性。(3)开发协同工作流程引擎。为各功能模块间 的协同工作制定标准化流程。以网络故障处理为例,从 故障发现、上报、诊断、处理到验证,每个环节涉及的 模块与操作步骤都在流程引擎中明确规定。当故障发生 时,流程引擎自动触发相应模块按流程执行任务,确保

各模块协同有序,避免混乱无序的操作,提高整体运维 工作的流畅性与高效性。

3.3 规范运维流程

(1)制定标准化故障排查流程。梳理常见网络故障 类型,为每种故障制定详细排查步骤。如网络延迟过高 故障, 先检查网络链路状态, 再查看路由器、交换机配 置,接着分析网络流量分布等,按顺序逐步排查,避免 运维人员盲目尝试。为每个排查步骤提供操作指南与参 考数据,帮助运维人员快速判断问题所在,缩短故障排 查时间。(2)完善故障上报与处理流程。明确故障上报 渠道与标准格式。一线运维人员发现故障后,通过专门 故障上报系统,按规定格式填写故障现象、出现时间、 影响范围等信息,系统自动将故障报告发送至相关负责 人与处理团队。处理团队接到报告后,依据故障等级启 动相应处理流程, 规定各环节处理时间节点, 确保故障 得到及时、有序处理。(3)加强运维人员培训与考核。 定期组织运维人员参加标准化运维流程培训, 使其熟悉 并掌握各类运维操作流程与规范。建立考核机制,将运 维人员对流程的执行情况纳入绩效考核。对严格按照流 程操作且表现优秀的人员给予奖励,对违反流程或操作 不规范的人员进行惩罚,督促运维人员自觉遵守流程, 提高运维工作质量与效率。

3.4 加强安全管理

(1) 部署先进的人侵检测与防御系统。采用基于人工智能与机器学习技术的人侵检测系统,实时监测网络流量。通过学习正常网络行为模式,能精准识别异常流量与潜在攻击行为,如DDoS攻击、恶意软件传播等。一旦检测到攻击,入侵防御系统立即采取措施,如阻断攻击源IP、限制异常流量,有效保护网络免受外部侵害。(2)定期进行安全漏洞扫描与修复。运用专业安全漏洞扫描工

具,定期对网络设备、服务器、应用程序等进行全面扫描。及时发现系统漏洞、弱密码、不安全配置等安全隐患。根据扫描结果,制定详细修复计划,优先处理高危漏洞。在修复过程中,做好数据备份与风险评估,确保修复操作不会对网络正常运行产生负面影响,保障网络系统安全稳定。(3)强化员工安全意识培训。定期组织网络安全培训活动,向员工普及网络安全知识与防范技巧。培训内容包括常见网络攻击手段、如何识别钓鱼邮件、安全使用网络设备等。通过案例分析、模拟演练等方式,提高员工安全意识与应急处理能力^[4]。使员工在日常工作中养成良好安全习惯,如不随意点击不明链接、定期更换密码等,从人员层面降低网络安全风险。

结语

综上所述,网络运维管理系统的优化是应对数字化 挑战的必然要求。通过升级技术架构以提升数据处理与 扩展能力,增强功能模块协同性以提高故障处理效率, 规范运维流程以保障操作有序性,同时强化安全管理筑 牢防护屏障,可全面提升系统性能。这不仅能减少网络 故障对业务的影响,还能为企业数字化转型提供坚实的 网络支撑,助力企业在激烈的市场竞争中保持技术优势 与运营稳定性。

参考文献

[1]王欣.企业网络运维管理系统研究与实现[J].科学与 财富,2021,13(11):149.

[2]方欣欣.企业网络运维管理优化研究[J].信息系统工程,2020(5):155-156.

[3]吕筱.基于Web的地震信息网络运维管理系统研究 [J].科学技术创新,2025(5):18-21.

[4]李宏,左延智,张宗鹏,等.一种有效的网络运维管理系统的设计与实现[J].数字通信世界,2020(4):20-22.