基于大数据分析的融合通信智能分析平台设计

袁庭杰

江苏州维通信科技有限公司 江苏 扬州 225000

摘 要:针对融合通信数据多源异构、实时性强、流量动态变化的特点,结合平台在融合接入、开放接口、自主可控等方面的需求,设计基于大数据分析的融合通信智能分析平台。搭建涵盖数据采集、处理存储、分析应用的总体架构,运用分布式计算、实时流处理等大数据技术,并融合机器学习与数据挖掘方法,达成数据高效处理与智能分析,再以加密、访问控制等保障安全,形成多功能平台,为融合通信提供高效支撑。

关键词:大数据分析;融合通信;智能分析;平台设计

引言

融合通信技术快速发展,多源异构数据汇聚带来处理难题,实时性要求与动态流量变化加剧系统负荷,现有平台在融合接入、智能分析等方面存在不足。为此,本文设计基于大数据分析的融合通信智能分析平台。通过分析数据特点与需求,构建三层总体架构,运用大数据处理、机器学习等关键技术,实现多源数据融合、智能分析及安全保障,旨在提升通信质量与效率,满足多样化业务需求。

1 融合通信数据特点与需求分析

1.1 融合通信数据特点

融合通信数据展现出多源异构的特性。通信网络涵 盖无线、光纤、卫星等多种技术,如2G、3G、4G、5G 以及Wi-Fi等不同网络类型。这使得数据来源广泛,且 数据格式、传输协议等存在差异。语音数据多以特定音 频编码格式传输,视频数据则有多种分辨率、帧率和编 码标准,即时消息数据格式也各不相同。这些多源异构 数据在统一的融合通信体系下汇聚,增加了数据处理的 复杂性。其具有实时性强的显著特征。在语音通话、视 频会议等场景中,信息需即时传递,以保障流畅沟通。 例如在远程协作时, 若语音数据传输延迟, 会导致交流 卡顿,影响工作效率;视频会议中视频数据的延迟会使 画面不同步, 无法实现高效互动。这就要求融合通信系 统具备高效的数据传输与处理能力,以确保各类实时数 据快速、准确地送达。数据流量动态变化明显。在日常 工作时段,企业内部通信数据流量相对稳定,以即时消 息、常规语音通话为主。在突发状况下,如紧急会议召 开、突发事件应急处理时,视频会议、大量文件传输等 会使数据流量瞬间激增。这种动态变化对系统的带宽资 源调配能力提出了极高要求,系统需能够根据流量变化 实时调整资源分配,保障通信质量。

1.2 平台需求分析

平台需具备强大的融合接入能力。要对接众多厂家 和设备型号,实现多种通信方式的集成。将语音、视 频、即时消息、电子邮件、文件共享等多种通信和协作 工具整合于一个统一系统中, 让用户通过单一界面即可 访问所有通信渠道。还需支持多种终端设备的互联互 通,包括手机、平板电脑、电脑、可穿戴设备等,满足 用户在不同场景下通过不同终端进行通信的需求。开放 接口功能的完善是关键。需将各类功能封装成标准接 口,支撑业务系统实现音视频呼叫、多方会商、视频查 看、短信收发、传真收发等通信调度功能。这有利于与 企业内部其他业务系统深度融合,如与企业办公系统集 成, 使员工在办公软件中就能便捷地使用融合通信功 能,提升整体办公效率。面对不同用户的多样化需求, 平台自主可控性要高。软硬件应具备自主研发生产能 力,以便根据不同行业用户的定制化需求进行灵活调 整。无论是在功能模块的增减,还是系统性能的优化方 面,都能满足用户特定要求,同时也能更好地适应国产 化要求,保障系统安全与稳定运行。

2 基于大数据分析的融合通信智能分析平台总体架构设计

2.1 数据采集层

在融合通信智能分析平台中,数据采集层肩负着基石性的重任。此层需构建起多元的数据采集渠道,以适配融合通信多源异构的数据特性。针对无线、光纤、卫星等不同通信网络技术,部署相应的数据采集设备与软件模块,实现对2G、3G、4G、5G以及Wi-Fi等各类网络数据的精准捕获。例如,在无线通信网络覆盖区域,利用专门设计的传感器节点,实时采集网络信号强度、信道质量等关键数据;对于光纤网络,则通过光信号采集设备,获取数据传输的速率、误码率等信息。在语音、

视频、即时消息等不同类型数据的采集方面,要开发具备针对性的数据采集工具。对于语音数据,采用先进的音频采集算法,能够在复杂环境中准确捕捉语音信号,并将其转化为数字格式;针对视频数据,依据不同的分辨率、帧率和编码标准,运用自适应的视频采集技术,保障视频画面的清晰与流畅采集;即时消息数据采集则需搭建高效的数据抓取接口,实时获取消息内容、发送时间、发送者与接收者等关键信息。还需考虑数据采集的实时性与准确性要求,通过优化采集频率、采用时间同步技术等手段,确保采集到的数据能够真实反映融合通信系统的实时运行状态^[1]。

2.2 数据处理与存储层

数据处理与存储层是融合通信智能分析平台的中枢 核心, 承载着对采集到的海量多源异构数据进行清洗、转 换、集成与存储的关键使命。在数据清洗环节,运用先进 的数据质量检测算法,识别并剔除数据中的噪声、重复数 据以及错误数据,保障数据的准确性与完整性。例如,通 过相似度匹配算法,对重复的语音数据或视频数据进行去 重处理; 利用数据校验规则, 检测并修正即时消息数据中 的格式错误。数据转换过程中,针对不同格式、传输协议 的数据,开发专用的数据转换工具,将其统一转换为平台 能够识别与处理的标准格式。如将多种音频编码格式的语 音数据转换为通用的PCM格式,把不同视频编码标准的数 据转换为H.265等高效编码格式,以提升数据处理与传输 的效率。数据集成则需构建强大的数据融合机制,将来自 不同数据源、不同类型的数据进行有机整合,形成统一的 数据视图。通过建立数据关联模型,实现语音、视频、即 时消息等数据之间的关联分析。在数据存储方面,根据融 合通信数据的特点与需求,采用混合存储架构。对于实时 性要求极高的语音通话、视频会议等数据,运用高速的内 存存储技术,保障数据的快速读写与处理:对于历史数据 以及非实时性的数据,则采用分布式文件系统或大数据存 储技术,如Hadoop分布式文件系统(HDFS),实现数据 的可靠存储与高效管理,同时满足数据量动态变化时的存 储扩展需求。

2.3 数据分析与应用层

数据分析与应用层是融合通信智能分析平台价值的 直接体现层,借助大数据分析技术与人工智能算法,深 度挖掘融合通信数据中的潜在价值,为用户提供丰富 且实用的应用服务。在数据分析阶段,运用数据挖掘算 法,如关联规则挖掘、聚类分析、分类算法等,对融合 通信数据进行多维度分析。通过关联规则挖掘,发现语 音通话、视频会议与即时消息之间的关联关系,例如哪 些用户在进行视频会议时经常伴随大量即时消息的交互;利用聚类分析,将具有相似通信行为的用户聚为一类,以便进行精准的用户画像与服务推荐。基于数据分析结果,构建多样化的应用服务。在通信质量优化方面,通过对网络数据与业务数据的实时分析,及时发现通信过程中的质量问题,如语音卡顿、视频模糊等,并运用智能算法自动调整网络参数与资源分配策略,提升通信质量。在用户行为分析与预测领域,根据用户的历史通信行为数据,预测用户的未来通信需求,为用户提供个性化的通信服务推荐,如推荐适合用户使用习惯的通信工具组合、预测用户可能参与的视频会议时间与主题等。还可开发智能客服应用,利用自然语言处理技术,自动解答用户在使用融合通信服务过程中遇到的问题,提升用户体验^[2]。

3 基于大数据分析的融合通信智能分析平台关键技术实现

3.1 大数据处理技术

(1) 为高效应对融合通信中大规模数据的挑战,采 用分布式计算技术。将庞大的数据处理任务分割为众多 小任务,分配至集群内的不同计算节点。这些节点并行 运作,各自处理所分配任务,极大提升处理速度。例如 在分析海量语音通话记录时,可利用分布式计算技术, 让多个节点同时对不同时间段的语音数据进行分析,如 对通话时长、通话频率等信息的统计分析,相较于单机 处理,能大幅缩短处理时间,提高分析效率。(2)运用 分布式文件系统来存储融合通信数据。它将数据分散存 储于多个独立设备,凭借可扩展的系统架构,多台存储 服务器共同分担存储负荷。通过元数据精准定位数据在 服务器中的存储位置,具备高可靠性、可用性及存取效 率,且易于扩展。以存储大量视频会议资料为例,分布 式文件系统可将视频文件分块存储在不同服务器上,当 需要调用某一视频时,依据元数据迅速找到对应存储位 置,实现高效读取,同时在数据量增加时,能方便地添 加存储服务器扩展存储容量。(3)引入实时流处理技 术处理实时性要求高的融合通信数据, 像语音通话、视 频会议数据。该技术可对源源不断流入的数据进行即时 处理, 快速生成结果。在视频会议进行中, 实时流处理 技术能实时分析视频流数据,检测视频卡顿、画面模糊 等质量问题,并及时反馈调整,保障视频会议的流畅进 行,提升用户体验[3]。

3.2 机器学习与数据挖掘技术

(1)借助聚类算法对融合通信用户进行分类。依据 用户的通信行为特征,如通话时长、通话频率、使用的 通信方式(语音、视频、即时消息的使用占比)等,将 具有相似行为模式的用户归为一类。通过聚类分析,能 够清晰洞察不同用户群体的通信习惯, 为个性化服务推 荐提供有力支撑。例如发现某类用户频繁使用视频通话 且通话时长较长,针对这类用户可精准推荐高清视频通 信服务套餐或相关的视频优化功能。(2)利用分类算 法对融合通信数据进行分类预测。如根据历史数据,训 练分类模型来预测新产生的即时消息是否为重要消息, 或者预测某次视频会议是否会出现通信质量问题。以预 测视频会议质量为例,模型可综合网络信号强度、参与 会议人数、设备性能等多种因素进行判断,提前为可能 出现质量问题的会议采取优化措施,如调整网络带宽分 配、推荐更适配的设备等。(3)运用关联规则挖掘算法 探寻融合通信数据间的潜在关联。全面挖掘语音通话、 视频会议、即时消息以及文件传输等不同通信行为间复 杂且隐秘的关联关系。经细致分析发现,某些用户在筹 备重要视频会议前,往往会先通过即时消息把相关资料 精准发送给参会人员。基于此关联,可在用户发起视频 会议时,自动提醒其是否需要发送相关资料,优化通信 流程,提高工作效率。

3.3 数据安全与隐私保护技术

(1)采用加密技术保障融合通信数据在传输与存储过程中的安全性。在数据传输阶段,运用SSL/TLS等加密协议,对语音、视频、即时消息等数据进行加密,使数据在网络中以密文形式传输,防止数据被窃取或篡改。在数据存储环节,对存储在服务器上的历史通信数据进行加密存储,即使数据存储设备遭遇非法访问,不法分子也难以获取真实数据内容,确保数据的保密性。(2)实施访问控制策略,严格限定用户对融合通信数据的访问权限。需全方位考量用户身份,不仅涵盖其在企业中的职位高低、所属部门,还涉及具体项目参与情况;精

准界定角色,如数据分析师、安全运维员等;紧密结合业务需求,精细设置对语音通话、文字聊天、文件传输等不同类型数据的访问级别。普通员工仅能访问自身记录,管理员依授权访问特定数据,防止越权,保障安全隐私。(3)运用数据脱敏技术对敏感数据进行处理。在对融合通信数据进行分析或共享时,将用户的敏感信息,如电话号码、身份证号、通信内容中的敏感词汇等进行脱敏处理,替换为虚构但具有相似特征的数据。如此一来,既能满足数据分析或数据共享的需求,又能保护用户的隐私信息不被泄露,确保在数据使用过程中隐私安全^[4]。

结语

综上所述,基于大数据分析的融合通信智能分析平台,针对数据特性与实际需求,构建了合理的总体架构,运用关键技术实现了数据高效处理、智能分析及安全保障。平台具备强大的融合接入与自主可控能力,能优化通信质量、提供个性化服务,有效应对融合通信中的复杂挑战。未来可进一步深化算法优化与功能拓展,提升平台适应性与智能化水平,为融合通信领域发展提供更强助力。

参考文献

- [1]高欣,李苗,张燕玲.基于大数据分析的融合通信智能分析平台设计[J].信息通信技术,2023,17(1):78-84.
- [2]刘洁然.基于大数据分析的精准智能服务平台设计 [J].电脑编程技巧与维护,2025(3):115-118.
- [3]朱骏.基于大数据分析的配电网智能化运维管控平台设计[J].通信电源技术,2024,41(5):14-16.
- [4]刘晔,蒋道环,伍江瑶.基于大数据分析的电力信息 化智能管控平台设计[J].自动化与仪器仪表,2022(9):173-176,185.