新能源并网对电力系统稳定性的影响及优化控制

王 凯

国家能源集团宁夏煤业有限责任公司烯烃一分公司 宁夏 银川 750409

摘 要:随着全球能源转型的加速推进,新能源发电在电力系统中的占比持续攀升。然而,新能源的间歇性、波动性和随机性特征给电力系统的频率、电压及功角稳定性带来了严峻挑战。本文系统分析了新能源并网对电力系统稳定性的影响机制,从频率稳定性、电压稳定性及功角稳定性三个维度展开深入探讨,并提出了基于虚拟惯性控制、动态无功补偿、储能技术及智能电网建设的优化控制策略,为构建高比例新能源接入的稳定电力系统提供理论支撑与实践指导。

关键词: 新能源并网; 电力系统稳定性; 虚拟惯性控制

1 新能源并网对电力系统稳定性的影响机制

1.1 频率稳定性影响

在传统电力系统的运行框架中, 同步发电机扮演着 至关重要的角色。其转子具有显著的物理惯性, 能够在 系统频率发生波动时,自动且迅速地释放或吸收能量。 具体而言, 当系统负荷突然增加导致频率下降时, 同步 发电机转子因惯性作用会继续以原有速度转动,将储存 的动能转化为电能输出,减缓频率下降的速度;反之, 当系统负荷减少频率上升时,转子会吸收多余能量,抑 制频率上升。这种天然的频率缓冲机制, 为电力系统的 稳定运行提供了坚实的保障。然而,新能源发电单元 (如双馈风电机组、光伏逆变器)的并网方式与传统同 步发电机截然不同。它们通过电力电子变换器实现与电 网的连接,输出功率能够根据光照强度、风速等自然条 件实现瞬时变化, 且缺乏物理惯性。低频减载是电力系 统在频率严重下降时为防止系统崩溃而采取的紧急措 施,一旦触发,将导致部分负荷被切除,影响用户的正 常用电。此外,新能源的功率预测误差也是一个不容忽 视的问题。当新能源实际出力与预测值存在较大偏差 时,系统需要频繁调整其他发电单元的出力来弥补功率 缺口,这使得频率稳定控制的难度呈指数级上升,给电 力系统的安全稳定运行带来了巨大挑战[1]。

1.2 电压稳定性影响

新能源发电单元的无功功率特性与传统机组存在显著差异,这是导致电压稳定性问题的重要原因之一。以光伏逆变器为例,在常见的控制模式下,它通常采用单位功率因数控制,这种控制方式使得光伏逆变器仅能提供有限的无功支持。无功功率在电力系统中对于维持电压稳定起着关键作用,它能够调节电网中的电压水平,补偿线路和变压器等设备的无功损耗。而光伏逆变器有

限的无功支持能力,使得其在面对大规模并网时,难以 满足电网对无功功率的需求。双馈风电机组虽然具备一 定的无功调节能力,但受到变流器容量的限制。一般来 说,其无功调节能力通常为额定容量的30%-50%。当 新能源大规模集中接入电网末端时,局部区域的无功补 偿缺口会变得十分突出,可达20%-30%。无功补偿的 不足会导致电压偏差超过±5%的标准限值,影响用户的 用电质量和设备的正常运行。例如,一些对电压敏感的 电子设备, 在电压偏差较大的情况下可能会出现故障或 损坏。同时,新能源的随机出力特性会引发潮流方向的 频繁变化。在传统电力系统中,配电网通常呈现出"辐 射状"结构,潮流从上级电网流向下级电网,方向相对 固定。然而,随着新能源的大规模接入,这种结构被打 破,转变为"多电源-多负荷"的复杂网络。在这种复 杂网络中,潮流方向不再单一,而是根据新能源的出力 和负荷的需求实时变化。部分线路的负载率会因此超过 80%, 热稳定问题日益突出。线路负载率过高会导致线路 发热加剧,加速线路老化,甚至可能引发线路故障。例 如,某风电基地接入后,周边110kV线路负载率从45%迅 速攀升至78%, 电压波动幅度扩大至±8%, 严重威胁了 电网的安全运行。电压波动过大会影响电气设备的性能 和寿命,还可能导致一些保护装置误动作,进一步影响 电网的稳定性。

1.3 功角稳定性影响

新能源发电单元的动态响应特性与传统同步发电机 存在本质区别,这给电力系统的功角稳定性带来了新的 挑战。以风电场为例,风电场通过电力电子设备实现并 网,缺乏机械惯性环节。在系统发生故障时,传统同步 发电机由于存在机械惯性,其电磁转矩的恢复速度相对 较慢,能够为系统提供一定的缓冲时间。而风电场的电

磁转矩恢复速度比传统机组快3-5倍,这种快速的电磁转 矩变化容易导致功角失步风险。功角失步是指发电机转 子与系统其他部分之间的相位差不断增大, 最终导致发 电机与系统解列,严重影响电力系统的稳定性。此外, 新能源的随机出力会导致系统等效阻抗实时变化。传统 基于固定阻抗模型的功角稳定性分析方法, 是在假设系 统阻抗不变的情况下进行的。然而,新能源的随机出力 使得系统阻抗不断变化, 传统分析方法无法准确反映系 统的实际运行情况,从而失效。研究表明,当新能源占 比超过40%时,系统功角稳定裕度降低至15%以下,接 近临界失稳状态。功角稳定裕度是衡量系统功角稳定性 的重要指标,裕度越小,系统越容易失去稳定。更严峻 的是,新能源发电单元的故障穿越能力(如低电压穿越 LVRT)与保护装置动作特性不匹配。低电压穿越能力是 指新能源发电单元在电网电压跌落时,能够在一定时间 内保持并网运行,并向电网提供一定的无功支持,帮助 电网恢复电压稳定[2]。然而,目前部分新能源发电单元 的低电压穿越能力与保护装置的动作特性存在差异。在 故障期间,保护装置可能会因为检测到电压异常而误动 作,导致新能源脱网。新能源脱网概率的增加会进一步 削弱系统的功角稳定性,形成恶性循环。例如,在某些 电网故障情况下,新能源脱网概率增加了30%-50%,这 使得系统在故障后的恢复变得更加困难,严重威胁了电 力系统的安全稳定运行。

2 新能源并网稳定性优化控制策略

2.1 虚拟惯性控制

针对新能源惯量缺失问题,虚拟惯性控制(VIC) 技术为解决这一难题提供了有效途径。该技术的核心原 理是通过精确检测系统频率变化率(dω/dt),动态调整 新能源发电单元的有功输出,从而模拟同步发电机的转 子惯性响应。在实际应用中, 以光伏逆变器为例, 通过 在逆变器的控制系统中引入虚拟惯性环。当系统频率下 降时,虚拟惯性环会迅速感知到频率的变化,并控制逆 变器快速减少有功输出。此时, 逆变器中的储能电容会 释放储存的能量,将其转化为电能输入电网,以支撑系 统频率,减缓频率下降的速度。相反,当系统频率上升 时,虚拟惯性环会控制逆变器增加有功输出,吸收电网 中多余的能量,抑制频率上升。通过大量的仿真实验和 实际案例验证,采用VIC技术后,系统的等效惯性常数得 到了显著提升。例如,在某电力系统中,系统等效惯性 常数从原来的2.5s提升至4.0s。这意味着系统在面对频率 波动时,能够提供更大的缓冲能量,增强了系统的频率 稳定性。同时, 频率最低点也得到了明显改善, 从原来 的恶化情况改善了0.3Hz。这表明VIC技术能够有效地模 拟同步发电机的惯性响应,为新能源并网后的频率稳定 提供了有力支持,使得新能源发电单元能够在一定程度 上具备类似传统同步发电机的频率调节能力。

2.2 动态无功补偿

为解决新能源并网引发的无功支撑不足问题,构建分 层分布式的动态无功补偿体系是关键。在新能源场站侧, 配置静止同步补偿器(STATCOM)或动态无功补偿装置 (SVC)是常见的有效措施。STATCOM和SVC具有快速 动态调节无功功率的能力,能够根据电网电压的变化实 时调整自身的无功输出。例如,某风电场安装了10Mvar STATCOM后, 其电压波动范围从原来的±8%显著缩小至 ±3%, 完全满足了电网运行的要求。这表明STATCOM能 够及时补偿风电场无功功率的不足,稳定风电场出口电 压,提高风电场的并网质量。在电网侧,通过优化无功补 偿装置的布局,采用"集中补偿+分散补偿"相结合的 模式,可以进一步提升无功功率的传输效率。集中补偿可 以在电网的关键节点设置大型无功补偿装置, 为整个电网 提供基础的无功支持;分散补偿则是在新能源接入点附近 或负荷密集区域设置小型无功补偿装置, 就近补偿无功功 率,减少无功功率在电网中的传输损耗。此外,充分利用 新能源发电单元自身的无功调节能力, 如双馈风电机组的 超容补偿技术,可以进一步降低无功补偿成本。超容补偿 技术通过在双馈风电机组中配置超级电容器,利用其快速 充放电的特性, 实现无功功率的灵活调节, 提高了新能源 发电单元的无功支撑能力,同时减少了外部无功补偿装置 的投资和运行成本。

2.3 储能技术

储能技术作为应对新能源间歇性与波动性的核心手段,在新能源并网稳定性控制中发挥着不可替代的作用。在新能源发电侧配置电池储能系统(BESS)是一种常见且有效的方式。电池储能系统具有响应速度快、充放电灵活等特点,能够实现功率的"削峰填谷"。例如,某光伏电站配套建设了10MW/20MWh锂离子电池储能系统后,其输出功率波动率从原来的30%显著降低至10%。这表明电池储能系统能够在光伏发电功率波动较大时,吸收多余的电能并储存起来;在光伏发电功率不足时,释放储存的电能,从而平滑光伏电站的输出功率,显著提升了其并网友好性,减少了新能源功率波动对电网的冲击。在电网侧,抽水蓄能电站凭借其大容量、长寿命的优势,成为提供调频、调峰及黑启动等备用服务的重要选择。以某抽水蓄能电站为例,其可在10秒内快速响应频率调节指令,调频容量达到200MW。这意味着

在电网频率发生波动时,抽水蓄能电站能够迅速调整自身的运行状态,提供或吸收有功功率,帮助电网恢复频率稳定。同时,抽水蓄能电站还可以在用电低谷时将水从下水库抽到上水库,储存电能;在用电高峰时将水从上水库放至下水库,带动发电机发电,实现调峰功能。此外,抽水蓄能电站具备黑启动能力,即在电网全停的情况下,能够依靠自身的能源启动,为电网的恢复提供初始电源,保障电网的连续供电能力。此外,新型储能技术(如压缩空气储能、飞轮储能)的快速发展,新能源并网稳定性控制提供了更多选择。压缩空气储能有储能容量大、寿命长等优点,适合大规模储能应用;飞轮储能则具有响应速度快、充放电次数多等特点,适用于对响应速度要求较高的场景。这些新型储能技术与传统电池储能技术相互补充,共同为新能源并网稳定性控制提供了多元化的解决方案^[3]。

2.4 智能电网建设

智能电网通过集成先进的信息通信技术(ICT)、传 感器网络及大数据分析, 实现了对新能源发电单元的实 时监测与精准控制,为提升电力系统协同运行能力提供 了强大支撑。例如,利用广域测量系统(WAMS)可以 实现新能源发电单元与同步发电机的协同调频。WAMS 能够在广阔的地理范围内实时采集电网的运行数据,包 括频率、电压、功率等信息,并通过高速通信网络将这 些数据传输到控制中心。控制中心利用数据驱动的优化 算法,根据电网的实时运行状态和新能源的出力情况, 动态分配调频资源,实现新能源发电单元与同步发电机 之间的协调配合,提升频率响应速度。这种协同调频方 式能够充分发挥新能源发电单元和同步发电机的各自优 势,提高电网的频率调节能力。在电压控制方面,基于 分布式状态估计技术, 可以实时计算电网各节点的电压 灵敏度。电压灵敏度反映了电网中某个节点电压变化对 其他节点电压的影响程度。通过实时计算电压灵敏度,

能够准确掌握电网中各节点的电压变化情况,为无功补偿装置的优化配置提供科学依据。例如,根据电压灵敏度的计算结果,可以合理调整无功补偿装置的安装位置和补偿容量,提高无功补偿的针对性和有效性,从而提升电网的电压稳定性。

此外,智能电网的自我修复能力(如自愈控制、孤岛运行)也是保障电网连续供电能力的重要手段。自愈控制是指电网在发生故障时,能够自动检测故障位置、隔离故障区域,并通过调整运行方式恢复非故障区域的供电,减少停电范围和停电时间。孤岛运行是指当电网与主网断开连接时,新能源发电单元和部分负荷能够形成一个独立的孤岛系统,继续为用户提供电力供应。智能电网的这些自我修复能力能够有效应对新能源脱网等极端事件,保障电网在复杂情况下的连续稳定运行,提高电力系统的可靠性和韧性。

结束语

未来研究需进一步关注以下方向:一是深化新能源 发电单元与电网的耦合机理研究,构建高精度动态模型;二是探索基于人工智能的自适应优化控制方法,提 升系统应对极端工况的能力;三是推动储能技术与电力 市场的深度融合,通过经济激励引导储能资源优化配 置。通过多学科交叉融合与技术持续创新,有望构建面 向未来的高弹性电力系统,为实现"双碳"目标提供坚 实支撑。

参考文献

[1]甘瑞研.风电场并网对电力系统电压稳定性的影响 [D].山东大学,2016.

[2]李柯.风电并网对系统电压稳定性影响研究[D].西安理工大学,2016.

[3]辛自立.风电并网对电力系统电压稳定性的影响[J]. 科技视界, 2017 (04): 32-33.