变频器故障诊断技术分析

卢 苇 宁波钢铁有限公司 浙江 宁波 435000

摘 要:本文围绕变频器故障诊断展开。首先介绍了常见故障类型及特征,如过电流、过电压、欠电压、过热等故障各有不同表现及成因。接着阐述了故障诊断技术,包括基于信号分析、知识推理和智能算法的诊断技术,各有其原理与优势。然后说明了故障诊断流程,涵盖故障信息收集、分析与定位、处理与验证等环节。最后提出提升诊断技术应用效果的措施,包括加强设备状态监测,实时捕捉潜在隐患;完善故障诊断知识库,提高诊断精准度;提高诊断人员专业素养,通过理论学习、实操训练和技术交流、确保诊断结果准确、保障变频器稳定运行。

关键词:变频器;故障诊断;技术分析

引言:在工业自动化领域,变频器作为核心设备, 其稳定运行对生产流程的顺畅推进至关重要。然而,受 多种因素影响,变频器故障频发,严重影响生产效率与 设备安全。变频器故障类型多样,不同故障呈现不同特 征,准确识别故障类型与特征是开展有效诊断的前提。 同时,基于信号分析、知识推理和智能算法的故障诊断 技术不断发展,为精准定位故障提供了有力手段。科学 合理的故障诊断流程以及提升诊断技术应用效果的措 施,能进一步提高故障处理效率与质量。深入探讨变频 器故障诊断相关内容,对保障工业生产稳定运行具有重 要的现实意义。

1 变频器常见故障类型及特征

变频器的故障类型多样,不同类型的故障具有不同 的特征,了解这些故障类型及特征是进行故障诊断的基 础。(1)过电流故障是变频器最常见的故障之一,表现 为变频器在运行过程中突然报过电流故障并停机。其主 要原因可能是电机负载过大、电机绕组短路、变频器输 出侧短路、加速时间设置过短等。过电流故障发生时, 变频器的电流检测电路会检测到超过额定值的电流,从 而触发保护机制。(2)过电压故障通常发生在电源电 压过高或电机减速过程中。当电源电压超过变频器的额 定输入电压范围时,会导致直流母线电压升高,引发过 电压故障; 电机减速时, 若制动单元或制动电阻工作异 常, 电机回馈的能量无法及时消耗, 也会使直流母线电 压升高,导致过电压保护动作。过电压故障发生时,变 频器会显示过电压故障代码,并停止输出。(3)欠电 压故障主要由电源电压过低或电源波动引起。当电源电 压低于变频器的最低工作电压时, 直流母线电压无法维 持正常水平,变频器会报欠电压故障。此外,电源线路 接触不良、熔断器熔断等也可能导致欠电压故障。欠电

压故障发生时,变频器可能会出现输出不稳定或停机现象。(4)过热故障多因变频器散热不良所致。变频器内部的功率器件在工作时会产生大量热量,若散热风扇损坏、散热片积尘过多、环境温度过高等,会导致散热效果下降,器件温度超过允许值,从而触发过热保护。过热故障发生时,变频器会显示过热故障代码,严重时会自动停机。(5)变频器还可能出现过载、通信故障、参数错误等故障类型,每种故障都有其特定的表现形式和产生原因^[1]。

2 变频器故障诊断技术

2.1 基于信号分析的诊断技术

基于信号分析的诊断技术是通过采集变频器运行过 程中的各种电信号、温度信号、振动信号等,对其进行 分析处理, 提取故障特征, 从而判断故障类型和位置。 (1) 电流信号分析是常用的诊断方法之一。通过对变频 器输入电流、输出电流的波形、频谱等进行分析,可以 判断电机是否过载、绕组是否短路、变频器输出是否平 衡等。例如, 电机绕组短路时, 输出电流会出现不平衡 或波形畸变; 过载时, 电流会超过额定值且持续时间较 长。(2)电压信号分析主要用于检测电源电压是否稳 定、变频器输出电压是否正常等。通过分析输入电压的 波动情况、输出电压的幅值和相位,可以判断电源是否 存在故障、变频器内部的逆变电路是否正常工作。(3) 温度信号分析通过监测变频器内部功率器件、散热系统 的温度,判断散热是否良好。若某一器件温度异常升 高,可能表明该器件存在故障或散热系统工作不正常。 (4)振动信号分析适用于检测变频器内部机械部件的故 障,如风扇轴承磨损、电抗器松动等。通过对振动信号 的频谱分析,可以识别出异常振动的频率成分,从而定 位故障部件。

2.2 基于知识推理的诊断技术

基于知识推理的诊断技术,是借助专家经验和故障 诊断知识来构建故障诊断模型,进而通过推理判断故障 原因的一种高效技术手段。(1)故障树分析法作为常用 的基于知识推理的诊断方法,具有独特的优势。它选取 某一特定故障作为顶事件,深入剖析导致该故障发生的 直接与间接原因,构建起由中间事件和底事件共同组成 的故障树。定性分析可确定故障树中各事件间的逻辑关 系,找出引发故障的关键路径;定量计算则能得出故障 发生的概率,精准定位故障发生的主要原因,为后续故 障诊断提供坚实可靠的依据。(2)专家系统同样在该领 域发挥着重要作用。它将领域专家的丰富知识和宝贵经 验以规则的形式存储于计算机中,形成知识库。推理机 依据知识库中的规则,模拟专家的思维过程进行故障诊 断。专家系统主要由知识库、推理机、数据库和人机接 口构成。当输入故障现象时,推理机迅速启动,依据知 识库规则展开推理,不仅准确得出故障原因,还能提供 针对性的处理建议,帮助技术人员快速、有效地解决故 障问题,保障系统的稳定运行。

2.3 基于智能算法的诊断技术

随着人工智能技术的发展,基于智能算法的诊断技 术在变频器故障诊断中得到了广泛应用。(1)神经网络 诊断技术是模拟人脑神经网络的结构和功能而建立的诊 断模型。它通过对大量故障样本的学习,建立输入(故 障特征)与输出(故障类型)之间的非线性映射关系。 在诊断时,将采集到的故障特征输入到训练好的神经网 络中,网络会输出相应的故障类型。神经网络具有自学 习、自适应能力,能够处理复杂的非线性问题,诊断准 确率较高。(2)模糊逻辑诊断技术利用模糊集合理论处 理故障诊断中的不确定性信息。由于变频器故障与故障 原因之间的关系往往是模糊的,模糊逻辑诊断技术通过 建立模糊规则库,对故障现象进行模糊推理,得出故障 原因的可能性。模糊逻辑诊断技术能够处理不精确、不 完整的信息,具有较强的容错能力。(3)支持向量机诊 断技术是一种基于统计学习理论的机器学习方法,它通 过寻找最优分类超平面,实现对故障类型的分类。支持 向量机在小样本情况下具有良好的分类性能,适用于变 频器故障诊断中样本数据较少的情况[2]。

3 变频器故障诊断流程

3.1 故障信息收集

故障信息收集作为故障诊断流程的首要环节,其核 心目的在于全方位、深层次地掌握故障现象及其关联的 各类情况,为后续精准诊断奠定坚实基础。所收集的信 息丰富且多元,涵盖变频器故障代码,这是变频器自身 发出的关键故障提示信号,犹如故障的"身份标识", 能为诊断人员迅速锁定故障大致方向提供重要线索。故 障发生时的运行状态信息同样不可或缺,像负载大小、 转速、环境温度等,这些数据能够清晰呈现故障发生的 具体工况,有助于深入剖析故障产生的条件与诱因。此 外,设备的使用年限和维护记录也至关重要,通过了解 设备的使用时长,可判断其老化程度;而详细的维护记录则能反映设备是否得到正确、及时的保养,进而分析 故障是否由长期使用磨损或维护不当所引发。

3.2 故障分析与定位

当完成充分的故障信息收集工作后,便进入关键的故障分析与定位阶段。此阶段要求诊断人员充分发挥专业能力,依据所获取的故障代码以及直观呈现的故障现象,紧密结合自身积累的丰富知识和实践经验,对可能引发故障的原因以及故障发生的大致范围作出初步判断,为后续精准排查提供方向指引。随后,借助先进的诊断技术和专业工具,对初步锁定的可能故障部位展开细致检测与深入分析。比如,当变频器报出过电流故障时,运用专业的电流信号分析设备,精准判断故障是源于电机自身问题,还是变频器输出侧存在异常;若报过热故障,则仔细检查散热风扇的运转状态、散热片的清洁程度等散热系统各环节是否正常。通过这样有条不紊的逐步排查,不断缩小故障范围,直至最终精准确定故障的具体位置和根源。

3.3 故障处理与验证

在精准确定故障原因与具体位置后,便进入关键的故障处理环节。此时,需依据故障类型采取针对性且行之有效的处理措施。若判定为电机绕组短路这一严重问题,鉴于电机已无法正常工作,必须及时更换全新的电机,以恢复系统的动力输出;若故障是散热风扇损坏导致散热不畅,应迅速更换同规格的散热风扇,保障设备散热功能正常;若故障源于参数设置错误,需运用专业调试工具,严格按照设备运行要求重新设置参数,确保各项参数精准匹配。完成故障处理后,需对变频器进行严谨的试运行操作。在试运行过程中,密切观察其运行状态,全面检查各项性能指标。若试运行一切正常,各项参数稳定且符合标准,则表明故障处理措施有效;若故障依旧存在,就必须重新启动故障分析与定位流程,不放过任何一个细节,直至彻底排除故障,保障设备稳定运行^[3]。

4 提升变频器故障诊断技术应用效果的措施

4.1 加强设备状态监测

加强设备状态监测对于及时发现故障隐患、提升诊断效率而言至关重要,是保障设备稳定运行的关键举措。以变频器为例,在其关键部位科学合理地安装各类高精度传感器和先进监测装置。这些装置能够实时、精准地采集变频器运行过程中的多维度参数,涵盖电流、电压的波动情况,温度的细微变化以及振动频率和幅度等。采集到的数据借助稳定可靠的数据传输网络,迅速且准确地发送至监控中心。监控中心配备专业的数据分析软件和经验丰富的技术人员,对接收到的数据进行实时深度分析和处理。一旦发现参数偏离正常范围,系统会立即触发预警机制,及时向维护人员发出详细的预警信息,明确指出可能存在问题的部位和参数异常情况。通过这种实时监测方式,能够在故障尚未发生时敏锐捕捉潜在隐患,实现故障的早期精准诊断和有效预防。

4.2 完善故障诊断知识库

构建完善的故障诊断知识库,是提升变频器故障诊断精准度的基石。这需要持续且系统地收集、整理变频器在实际运行过程中出现的各类故障案例,深度挖掘其中蕴含的诊断经验,广泛汇聚相关的技术资料。在此基础上,精心搭建并不断优化故障诊断知识库架构。知识库应全面涵盖各类故障的详细信息,包括故障类型的显著特征、根源性的产生原因、行之有效的诊断方法以及针对性的处理措施等。并且,要建立定期更新和补充机制,确保知识库内容紧跟技术发展和实际需求。此外,积极运用先进的知识管理技术,搭建便捷的知识共享平台,实现知识的高效流通与重用。如此一来,维护人员在面对故障时,能够迅速从知识库中获取所需信息,精准定位故障,制定科学合理的解决方案,进而显著提高故障诊断的效率与准确性。

4.3 提高诊断人员专业素养

诊断人员的专业素养在变频器故障诊断工作中起着 决定性作用,直接关乎诊断效果与质量。为提升其专业 水平,需构建全面且系统的培训教育体系。(1)深入开 展理论学习,让诊断人员透彻理解变频器的工作原理、复杂精细的结构组成,以及丰富多样的故障类型,精准掌握前沿的诊断技术与方法,为实际诊断奠定坚实理论基础。(2)强化实操训练,通过模拟真实故障场景,让诊断人员在实践中积累经验,提升操作熟练度与应变能力。此外,积极组织技术交流活动,促进诊断人员之间的经验分享与思维碰撞。(3)注重培养诊断人员的责任心与严谨的工作态度,使其在故障诊断过程中,以高度的责任感认真对待每一个环节,细致排查潜在问题,不放过任何细微线索,从而确保诊断结果准确无误,为变频器的稳定运行提供有力保障^[4]。

结束语

变频器故障诊断是一项复杂且关键的工作,涉及常见故障类型及特征的精准把握、多样诊断技术的灵活运用、严谨诊断流程的有序推进。通过基于信号分析、知识推理和智能算法的诊断技术,结合科学的故障诊断流程,可有效定位并解决故障。而加强设备状态监测能提前捕捉隐患,完善故障诊断知识库提供知识支撑,提高诊断人员专业素养确保诊断质量。未来,随着技术不断进步,我们需持续优化诊断方法与流程,不断提升故障诊断的准确性、及时性和有效性,为变频器的稳定运行和工业生产的顺利进行提供坚实保障。

参考文献

- [1]刘清峰.变频器故障诊断技术研究与分析[J].中国新通信,2020,(13):135-136.
- [2]王雪.变频器故障诊断技术研究[J].无线互联科技, 2020,(05):160-161.
- [3]吕兆俊,金文建,张剑峰.百万机组吸风机变频器低电压穿越性能的综合治理[J].科技风,2021,20(2):197-198.
- [4]张志轩,由新红,马欢,等.火电厂辅机变频器低电压穿越技术在电网应用研究[J].山东电力技术,2020,47(12): 32-36.