浅谈电力通信调度交换机组网建设

张文娜 呼和浩特供电公司 内蒙古 呼和浩特 010010

摘 要: 电力通信系统是电网安全稳定运行的重要支撑,调度交换机作为其核心设备,承担着指令传递、调度指挥等关键任务。本文围绕电力通信调度交换机组网建设展开研究,阐述了调度交换机的定义、功能及在电力通信中的关键作用,分析了组网要遵循的可靠性、安全性、可扩展性和经济性原则。重点探讨了信令、路由、冗余备份及网络安全等关键技术,并提出了包括组网方案设计、设备选型与部署、测试验证的实施路径。研究旨在为电力行业构建稳定、高效、安全的调度通信网络提供理论与实践参考,助力提升电力系统调度指挥能力和应急处置水平。

关键词: 电力通信调度交换机; 组网关键技术; 实施路径

引言:随着智能电网建设推进,电力业务对调度通信的可靠性、安全性和高效性提出更高要求,调度交换机组网建设的重要性愈发凸显。本文结合呼和浩特供电公司实践,从调度交换机概述入手,深入分析组网原则、关键技术及实施路径,为优化电力通信调度交换机组网提供思路,以满足电力系统持续发展的通信需求。

1 电力通信调度交换机概述

1.1 调度交换机的定义与功能

电力通信调度交换机是专为电力行业设计的专用通信设备,通过集成语音交换、指令传输、多终端协同等功能,构建电力调度指挥的专用通信通道。其核心定位是连接调度中心、变电站、发电厂等关键节点,实现跨层级、跨区域的实时通信。

在功能层面,调度交换机的功能体现在以下四个方面: (1)语音交换功能。支持调度台与终端、终端与终端之间的双向语音通信,具备低时延、高接通率的特性,确保调度指令"零丢包"传递; (2)调度指挥功能。通过优先级设置实现"强拆、强插、强显"等调度操作,保障紧急情况下调度员对通信链路的绝对控制权; (3)会议调度功能。可快速组建多方会议,支持同时接入数十个终端,满足电网故障时多部门协同决策需求; (4)录音与回放功能。对所有调度通话进行实时录音,形成可追溯的操作记录,为事故分析、责任认定提供依据。

1.2 调度交换机在电力通信中的作用

调度交换机是电力通信系统的核心支撑设备,其作用主要体现在以下方面: (1)保障电力调度业务连续性。电力系统24小时不间断运行,要求调度指令传递"零中断"。调度交换机通过冗余设计(如双机热备、链路备份),可在单点故障时自动切换,确保调度通信

不中断,为电网稳定运行提供底层保障。(2)提升调度效率的关键工具。传统通信方式存在接线复杂、响应滞后等问题,而调度交换机通过预设快捷键、一键直呼等功能,将调度指令传递时间缩短至秒级,显著提升倒闸操作、负荷调整等日常调度的执行效率。(3)增强电网应急处置能力。在电网故障或自然灾害等突发情况下,调度交换机可快速启动应急通信模式,通过会议调度功能集结运维团队、实时传递故障信息,并借助录音功能留存处置过程,为灾后复盘与流程优化提供数据支持¹¹。

2 电力通信调度交换机组网的原则

电力通信调度交换机组网要以电力系统的稳定性、 安全性和高效性为核心目标,遵循以下四大原则: (1) 可靠性优先原则。电力调度通信直接关系电网运行安 全,任何中断都可能引发大面积停电等严重后果。因 此,组网需通过"硬件冗余+链路冗余"双重设计保障 可靠性:核心设备采用双机热备模式,主备机切换时间 控制在毫秒级; 传输链路采用环形或网状拓扑, 避免单 点故障导致通信中断。同时具备故障自愈能力,通过智 能路由算法自动切换至备用路径,确保调度指令"断不 了、传得准"。(2)安全性防护原则。电力通信网是关 键信息基础设施, 需构建多层防护体系。在物理层, 设 备需具备防雷、抗电磁干扰能力,适应变电站等强电磁 环境; 在网络层, 部署防火墙和入侵检测系统, 限制非 授权终端接入, 防范恶意攻击; 在应用层, 对调度指令 和通话内容进行加密处理,同时通过权限分级管理,严 格控制调度操作权限, 杜绝越权使用风险。(3)可扩 展性适配原则。随着新能源并网、智能电网建设推进, 电力业务对通信需求持续增长。组网需预留足够扩展空 间:硬件接口支持模块化扩容,可根据终端数量增加灵 活添加板卡;协议兼容SIP、H.323等主流标准,便于接入 新类型终端;网络架构支持平滑升级,能逐步融合SDN/NFV等新技术,避免"推倒重来"式改造造成的资源浪费。(4)经济性平衡原则。在满足可靠性和安全性的前提下,需优化资源配置。通过"核心层高标准+接入层适度简化"的分层设计,降低整体建设成本;采用国产芯片和设备,减少对进口技术的依赖,同时降低维护费用;结合电力业务分布特点,合理规划节点布局,避免过度冗余导致的资源闲置,实现技术性能与经济效益的平衡^[2]。

3 电力通信调度交换机组网关键技术

3.1 信令技术

信令技术是电力通信调度交换机实现终端互联、指 令传递的核心支撑。电力调度场景中,常用的信令协议 包括以下No.7信令和Q信令,两者基于不同的技术架构适 配电力通信的特殊需求。(1) No.7信令采用分层结构, 分为消息传递部分(MTP)和用户部分(UP)。MTP 负责信令消息的路由、转发和差错控制,通过固定长度 的信令单元实现高速传输,适应大容量、多节点的组网 环境; UP则针对电力调度业务定义专用信令, 支持调 度指令优先级标记、强拆强插等特殊操作。在组网中, No.7信令通过独立的信令链路与语音链路分离,避免信 令拥堵影响语音传输,同时具备迂回路由能力,当主信 令链路故障时自动切换至备用链路,保障信令传输的连 续性。(2)Q信令是面向专用调度通信的协议,基于电 路交换技术设计,采用主从控制模式。调度台作为主设 备,通过Q信令对终端进行状态监控、呼叫控制和权限管 理,终端则被动响应主设备的指令。其信令格式简洁, 包含地址码、控制码和数据字段,可快速完成呼叫建立 与释放, 时延通常控制在数百毫秒内。

3.2 路由技术

路由技术在调度交换机组网中负责确定话务流的传输路径。电力调度场景中,路由选择要结合业务特性和网络状态,主要采用以下基于号码的路由和基于优先级的路由两种策略。(1)基于号码的路由以终端号码为核心依据,通过预设的号码分析规则确定路由方向。号码结构通常包含区域码、设备类型码和终端序号,交换机通过解析号码中的区域码定位目标所在区域,再根据设备类型码选择对应的传输链路。例如,针对变电站终端的呼叫,路由策略会优先选择直达变电站的专用链路,避免经过多级转发导致时延增加。(2)基于优先级的路由则根据业务的紧急程度动态调整传输路径。调度通信中,故障抢修、事故处理等业务被标记为高优先级,目常巡检、数据采集等业务为低优先级。路由算法会为高

优先级业务分配带宽充足、时延低的主用链路,低优先级业务则使用备用链路或共享链路。当主用链路出现拥堵时,低优先级业务会自动退让,确保高优先级业务的通信质量不受影响。该策略通过动态路由协议实现,交换机实时监测链路状态,根据带宽使用率、丢包率等参数调整路由权重,适用于业务流量波动较大的场景。

3.3 冗余备份技术

冗余备份技术通过在设备、链路、电源等层面设置 备用资源,实现故障状态下的无缝切换,避免单点故障 导致的通信中断。其设计要遵循"N+1"或"2N"冗余 原则,确保备用资源与主用资源具备同等的技术性能。 (1)设备冗余主要针对核心交换机和调度台,采用双机 热备模式。主用设备实时处理话务和信令,备用设备处 于同步状态,通过心跳检测机制实时监测主用设备的运 行状态。当主用设备出现硬件故障或软件异常时,备用 设备在毫秒级时间内接管所有业务, 切换过程对终端用 户透明。部分场景中,还会引入第三台设备作为冷备, 用于主备设备同时故障时的应急启动。(2)链路冗余通 过多路径设计实现,核心节点间通常采用环形或网状连 接,每个节点至少连接两条不同的传输链路。链路状态 通过实时监测协议进行监控, 当某条链路的丢包率、时 延超过阈值时,路由算法自动将话务切换至备用链路。 对于变电站等关键节点,链路冗余还会结合不同传输介 质,如同时部署光纤和微波链路,避免单一介质受自然 环境影响导致的中断。(3)电源冗余采用双路独立供电 设计, 主电源与备用电源来自不同的供电回路, 通过电 源切换模块实现无缝切换。核心设备还内置蓄电池组, 在外部供电全部中断时可维持数小时的正常运行,为应 急供电系统的启动争取时间。电源冗余需配合防雷接地 系统,避免电压波动或雷击对设备造成损坏。

3.4 网络安全技术

网络安全技术用于抵御调度交换机组网面临的恶意 攻击、非授权访问等安全威胁。其技术体系涵盖以下访 问控制、数据加密、状态监测等多个维度。(1)访问控 制技术通过终端身份认证和权限管理限制接入范围。终 端接入网络前,需通过基于数字证书的身份认证,证书 包含终端的物理地址、设备类型等信息,交换机验证通 过后才分配通信资源。权限管理采用分级模式,不同层 级的终端被赋予不同的操作权限,如调度台具备强拆强 插权限,普通终端仅具备基本通话权限,权限配置通过 加密信道下发并存储于交换机的安全模块中。(2)数据 加密技术用于保护传输过程中的信令和语音数据。信令 加密采用对称加密算法,主从设备间通过预设的密钥对 信令消息进行加密处理,密钥定期自动更新,避免长期使用导致的泄露风险。语音数据加密则在编码阶段嵌入加密因子,接收端通过对应的解密算法还原语音信号,加密过程对语音质量的影响控制在可接受范围内,确保通话清晰度不受明显影响。(3)状态监测技术通过入侵检测系统和日志审计机制实时捕捉异常行为。入侵检测系统通过分析网络流量特征,识别端口扫描、异常呼叫等攻击行为,发现异常时立即触发告警并阻断相关链路。日志审计机制则记录所有通信事件和操作行为,包括呼叫时间、终端地址、操作指令等,日志信息加密存储且不可篡改,为安全事件追溯提供依据^[3]。

4 电力通信调度交换机组网建设的实施路径

电力通信调度交换机组网建设需结合电力系统的拓 扑结构、业务需求和技术特性,通过科学规划与分步实 施,确保网络架构稳定可靠、功能适配实际场景。其核 心实施路径包括以下组网方案设计、设备选型与部署、 测试验证三个关键环节。(1)组网方案设计要以业务 覆盖范围为基础,构建分层架构。核心层部署于调度中 心, 采用大容量调度交换机作为核心节点, 通过网状拓 扑连接各区域分中心,支撑跨区域调度业务;汇聚层设 置在地区变电站或集控站,采用中型交换机实现区域内 终端的集中接入与话务汇聚,通过环形链路与核心层互 联,提升区域内通信的冗余能力;接入层直接连接发电 厂、配电所等终端站点,采用小型化设备或协议转换 器,适配不同类型的终端接口(如模拟话机、IP终端), 并通过星型拓扑接入汇聚层。方案设计中需重点核算话 务量,根据终端数量、并发呼叫需求确定交换机的容 量,同时预留20%-30%的冗余带宽,以应对业务增长。 (2)设备选型要兼顾技术适配性与场景兼容性。核心交 换机应具备支持No.7信令与SIP协议双模运行的能力,满 足传统调度业务与IP化转型的需求、目单机容量不低于 1000线,支持双机热备与无缝切换;汇聚层设备需具备 链路聚合功能,可将多条物理链路绑定为逻辑链路,提

升带宽利用率与可靠性;接入层设备需具备抗恶劣环境 能力,工作温度范围覆盖-40℃至70℃,支持防雷等级不 低于4级,适应变电站户外或强电磁环境。此外,设备需 通过电力行业专用认证,确保硬件接口、通信协议与电 力监控系统兼容,避免出现接入冲突。(3)部署实施阶 段要遵循"先试点后推广"的原则。试点阶段选择业务 相对简单的区域(如单一变电站与调度中心的连接), 完成设备安装、链路铺设与参数配置,重点验证信令交 互的稳定性、路由切换的及时性和安全防护的有效性; 试点通过后,逐步扩展至全网部署,部署过程中需制定 详细的割接方案,采用"并行运行"模式,即新网络与 原有网络同时工作,通过数据同步确保业务不中断,待 新网络运行稳定后再停用旧设备。部署完成后,需对网 络拓扑进行可视化建模,将设备位置、链路状态、业务 分布等信息纳入网管系统, 实现对全网运行状态的实时 监控与集中管理[4]。

结束语:电力通信调度交换机组网建设需综合考量 多方面因素,遵循科学原则,运用关键技术,严格实施 路径。通过合理设计与部署,可构建起适应电力系统需 求的调度通信网络。随着技术发展,需持续探索组网技术 创新,提升网络的智能化与国产化水平。呼和浩特供电公 司及行业内其他单位应不断优化组网方案,确保电力调度 通信稳定可靠,为电网安全高效运行提供坚实保障。

参考文献

[1]张静.电力调度程控交换机组网的建设运用[J].中文 科技期刊数据库(全文版)工程技术,2025(1):084-087.

[2]高健文.智能配电网中通信网路由调度算法研究 [D].安徽:安徽理工大学,2021(3):22-23.

[3]刘路平.软交换技术在电力通信网中的实际应用[J]. 通信电源技术,2013,30(5):90-91+95.

[4]蒋迪,莫熙,邵其专.基于VoIP技术的多网融合电网调度指挥系统研究[J].自动化与仪器仪表,2020(2):114-116.