基于深度学习的软件定义网络异常检测方法

车博山 田元元 薛建彬 侯邦旺 王 强 北方自动控制技术研究所 山西 太原 030006

摘 要:在数字化浪潮推动下,软件定义网络(SDN)凭借其灵活性与可编程性,成为现代网络架构的关键支撑。本文聚焦于基于深度学习的软件定义网络异常检测方法。首先阐述软件定义网络与深度学习技术基础,包括软件定义网络的概念及深度学习技术原理。接着详细介绍基于深度学习的软件定义网络异常检测模型构建过程,涵盖数据采集与预处理、特征工程、模型选择与训练以及评估优化。最后探讨多种深度学习在软件定义网络异常检测中的具体方法,如基于流量分析、控制器行为分析、融合多源数据以及基于深度强化学习的自适应异常检测方法,旨在为软件定义网络异常检测提供有效方案。

关键词:基于深度学习;软件定义;网络异常;检测方法

引言:随着网络规模不断扩大和复杂度日益提升,软件定义网络(SDN)凭借其灵活性与可编程性得到广泛应用。然而,SDN也面临着诸多安全威胁,异常检测成为保障其安全稳定运行的关键环节。深度学习作为人工智能领域的核心技术,具有强大的数据特征提取和模式识别能力,为解决SDN异常检测难题提供了新思路。本文旨在研究基于深度学习的软件定义网络异常检测方法,通过构建检测模型和探索多种检测方法,提高异常检测的准确性和效率,以应对不断变化的网络攻击,保障软件定义网络的安全可靠运行。

1 软件定义网络与深度学习技术基础

1.1 软件定义网络概述

软件定义网络(SDN)是一种新型网络架构,它将网络的控制平面与数据平面分离。控制平面负责网络的整体管理和策略制定,由集中的控制器实现,可对网络进行全局视图下的灵活编程与配置;数据平面则专注于数据包的转发,依据控制平面下发的规则处理流量。这种架构打破了传统网络设备功能紧耦合的局限,使网络更具灵活性和可管理性。它支持快速部署新业务、实现流量灵活调度,还能简化网络运维。凭借这些优势,SDN在数据中心、企业网络等众多场景得到广泛应用,成为推动网络创新发展的重要力量。

1.2 深度学习技术原理

深度学习是机器学习的一个分支,基于人工神经网络构建。其核心原理是通过构建多层非线性变换的神经网络模型,自动从海量数据中学习复杂的特征和模式。网络包含输入层、隐藏层和输出层,数据从输入层进入,经隐藏层逐层抽象和转换,最终在输出层得到结果。训练过程中,利用反向传播算法,根据输出结果与

真实标签的误差,从输出层向输入层逐层调整网络参数,使模型不断优化。深度学习凭借强大的特征提取和表示能力,在图像识别、语音处理、自然语言处理等众多领域取得了卓越成就^[1]。

2 基于深度学习的软件定义网络异常检测模型构建

2.1 数据采集与预处理

数据采集是构建异常检测模型的基础。在软件定义 网络环境中,可从控制器、交换机等设备采集多维度 数据,如流量统计信息(包括数据包大小、传输速率 等)、网络拓扑变化记录、控制器指令日志等。为保证 数据的完整性和准确性,需采用高效可靠的采集工具, 并合理设置采集频率。采集到的原始数据往往存在噪 声、缺失值和重复值等问题,影响模型性能,因此要进 行预处理。对于噪声数据,可采用平滑滤波方法去除; 缺失值可通过插值法或直接删除缺失样本处理;重复值 则予以剔除。此外,还需对数据进行标准化或归一化处 理,将不同量纲的数据映射到统一范围,避免因数据尺 度差异导致模型训练偏差,为后续特征工程和模型训练 提供高质量数据。

2.2 特征工程

特征工程旨在从原始数据中提取有价值的特征,以 更好地表示网络行为和异常模式。在软件定义网络异常 检测中,可从流量特征、时间特征和拓扑特征等多方 面入手。流量特征包括平均流量、流量突发程度等,能 反映网络的负载情况;时间特征如流量随时间的变化趋 势、周期性等,有助于发现基于时间的异常行为;拓扑 特征则关注网络结构的动态变化,如节点连接状态的改 变。提取特征后,还需进行特征选择,去除冗余和不相 关特征,降低数据维度,提高模型训练效率和泛化能 力。常用特征选择方法有过滤法、包裹法和嵌入法等, 可根据数据特点和模型需求选择合适的方法,构建出能 够有效区分正常和异常行为的特征集合。

2.3 深度学习模型选择与训练

选择合适的深度学习模型对于异常检测效果至关重要。常见的可用于软件定义网络异常检测的模型有自编码器(AE)、卷积神经网络(CNN)和循环神经网络(RNN)及其变体(如LSTM、GRU)。自编码器通过无监督学习学习数据的正常表示,将重构误差作为异常得分;CNN擅长处理具有局部相关性的数据,可用于分析网络流量的空间特征;RNN及其变体适合处理序列数据,能有效捕捉网络行为的时间依赖性。确定模型后,使用预处理好的数据集进行训练。将数据划分为训练集、验证集和测试集,采用合适的优化算法(如随机梯度下降、Adam等)调整模型参数,使模型在训练集上不断学习数据的内在规律,同时利用验证集监控模型性能,防止过拟合,确保模型具有良好的泛化能力。

2.4 模型评估与优化

模型评估是检验异常检测模型性能的关键环节。常用的评估指标有准确率、召回率、F1值、误报率和漏报率等。准确率反映模型正确分类的比例;召回率衡量模型检测出真实异常的能力;F1值是准确率和召回率的综合指标;误报率指将正常行为误判为异常的比例;漏报率则是未检测出真实异常的比例。根据评估结果对模型进行优化。若模型存在过拟合问题,可采用正则化方法、增加训练数据或早停法等;若性能不佳,可调整模型结构,如增加或减少网络层数、神经元数量;也可尝试不同的超参数组合,通过网格搜索或随机搜索等方法寻找最优参数,提升模型的异常检测性能,使其在实际软件定义网络环境中能够有效准确地识别异常行为[2]。

3 深度学习的软件定义网络异常检测的方法

3.1 基于流量分析的异常检测方法

(1)流量特征提取。在软件定义网络中,流量蕴含着丰富的网络行为信息,首先从采集到的原始流量数据里,提取基础特征,如数据包的大小、数量、传输速率,能直观反映流量的规模与活跃程度。进一步挖掘高级特征,像流量的时间分布特征,包括不同时间段流量的波动情况,可捕捉基于时间的异常模式;还有流量的空间分布特征,如不同节点间流量的流向和流量占比,能发现异常的流量路径。通过综合多维度特征,构建全面且能精准刻画网络流量状态的特征集合,为后续深度学习模型提供有效的输入数据。(2)深度学习模型应用。选用合适的深度学习模型对提取的流量特征进行分

析是关键, 卷积神经网络(CNN)可有效处理具有局部 相关性的流量特征,通过卷积层自动提取流量中的局部 模式,池化层降低数据维度,最后全连接层进行分类判 断,识别正常与异常流量。循环神经网络(RNN)及 其变体(如LSTM、GRU)适合处理流量序列数据,能 捕捉流量随时间的变化趋势和长期依赖关系,准确检测 出基于时间序列的异常行为。根据流量数据特点和检测 需求,灵活选择或组合这些模型,提高异常检测的准确 性。(3)实验验证与优化。为验证基于流量分析的异常 检测方法的有效性,需搭建实验环境,使用真实的软件 定义网络流量数据进行测试。将数据集划分为训练集、 验证集和测试集,用训练集训练深度学习模型,验证集 调整模型参数,测试集评估模型性能。根据评估指标, 如准确率、召回率、F1值等,分析模型的检测效果。 若模型性能不理想,针对问题优化模型,如调整网络结 构、增加训练数据、优化超参数等。同时,对比不同模 型和算法的检测结果,选择最优方案,不断提升基于流 量分析的异常检测能力。

3.2 基于控制器行为分析的异常检测方法

(1)控制器行为数据收集。在软件定义网络里,控 制器是核心控制枢纽,其行为数据蕴含着网络运行的关 键信息。可通过在控制器内部植入日志记录模块,详细 记录其发出的各类指令,如流表下发、拓扑更新等指 令的时间、类型、目标设备等。同时,利用网络监控工 具,从外部收集控制器与交换机之间的交互消息,包括 请求-响应消息的频率、内容等。此外,还能采集控制器 的系统资源使用情况,如CPU占用率、内存使用量等。 (2) 行为特征建模。收集到控制器行为数据后,需构建 合适的行为特征模型。先对数据进行预处理,去除噪声 和异常值,统一数据格式。接着,运用统计分析方法, 提取行为的基本特征,如指令的平均发出频率、资源使 用的平均水平等。进一步采用机器学习中的聚类算法, 对相似的行为模式进行分类,找出正常行为的典型簇。 还可以利用时间序列分析方法,建立控制器行为随时间 变化的动态模型,捕捉行为的周期性和趋势性特征。 (3)实时监测与预警。基于构建好的行为特征模型,对 控制器行为进行实时监测。设置专门的监测模块,持续 收集控制器的实时行为数据,并按照预定义的特征提取 方法, 快速计算出当前行为的特征参数。将这些参数与 行为特征模型中的正常范围进行实时比对, 若发现某些 参数超出正常阈值或行为模式与典型簇不匹配,则判定 为异常行为。一旦检测到异常,立即触发预警机制,通 过短信、邮件等方式及时通知网络管理员。

(1) 多源数据融合策略。在软件定义网络中, 多源

3.3 融合多源数据的异常检测方法

数据涵盖流量数据、控制器行为数据、拓扑结构数据 等。为有效融合这些数据,可采用分层融合策略。在数 据层, 先对不同来源的数据进行清洗和预处理, 统一数 据格式与时间戳,确保数据质量与一致性。特征层融合 时,从各类数据中提取关键特征,如从流量数据提取流 量大小、方向特征, 从控制器行为数据提取指令频率特 征,再将这些特征进行组合与筛选,去除冗余信息。 (2) 深度学习模型设计。设计融合多源数据的深度学习 模型是关键。可构建一个多输入的神经网络模型,不同 输入分支分别处理不同类型的数据。例如,一个分支采 用卷积神经网络(CNN)处理具有空间特征的拓扑结构 数据, 提取拓扑中的局部模式; 另一个分支使用循环神 经网络(RNN)及其变体处理时间序列性质的流量数据 和控制器行为数据,捕捉数据的时间依赖关系。然后, 将各分支提取的特征进行拼接,通过全连接层进行综合 分析与分类,判断是否存在异常。(3)数据关联与挖 掘。融合多源数据后,需深入挖掘数据间的关联关系。 利用关联规则挖掘算法,找出不同数据特征之间的频繁 模式与关联规则。例如,发现当控制器发出特定指令 时,某些网络节点的流量会出现规律性变化,这种关联 规则有助于理解网络正常运行时的行为模式。同时,采 用聚类分析方法,将相似的数据样本聚集在一起,识别 出正常行为簇与异常行为簇。通过分析异常行为簇中数 据的特点,找出导致异常的潜在因素。

3.4 基于深度强化学习的自适应异常检测方法

(1)强化学习框架构建。在软件定义网络异常检测场景中构建强化学习框架,将检测系统视为智能体,网络环境作为外部世界。定义状态空间,涵盖流量特征、控制器行为指标、拓扑变化等网络实时状态信息。动作空间设定为检测策略调整动作,如改变检测阈值、切换检测模型等。奖励函数根据检测效果设计,正确检测异常给予正奖励,误报或漏报给予负奖励,引导智能体学

习最优检测策略,以适应动态变化的网络环境。(2)深 度强化学习算法应用。选用合适的深度强化学习算法, 如深度Q网络(DQN),利用神经网络逼近Q函数,处理 高维状态输入。通过经验回放机制,打破数据相关性, 提高学习效率。还有近端策略优化(PPO)算法,能稳定 地优化策略,避免策略更新幅度过大。将网络状态输入 算法模型,模型输出动作决策,智能体执行动作与环境 交互,根据反馈的奖励不断调整策略参数,提升异常检 测的准确性和适应性。(3)在线学习与更新。深度强化 学习模型需具备在线学习能力,实时接收网络新数据。 当新流量到达或网络拓扑变化时,将当前状态输入模 型, 获取检测动作并执行。根据执行结果获得奖励, 利 用新数据对模型参数进行在线更新,采用随机梯度下降 等方法优化神经网络权重。通过持续在线学习,模型能 及时适应网络的新特征和新攻击模式,不断调整检测策 略,始终保持较高的异常检测性能,保障软件定义网络 的安全稳定运行[3]。

结束语

基于深度学习的软件定义网络异常检测方法,为保障网络的安全稳定运行开辟了新路径。通过融合流量分析、控制器行为分析、多源数据融合以及深度强化学习等多种技术手段,从不同维度深入挖掘网络中的异常模式,有效提升了异常检测的准确性与适应性。尽管目前该方法在模型复杂度、实时性处理等方面仍面临挑战,但随着深度学习算法的不断优化和计算能力的持续提升,其发展前景十分广阔。

参考文献

[1]李浩.基于深度学习的网络流量入侵检测方法研究 [J].电脑知识与技术,2024,20(23):96-99+110.

[2]孟玉飞.基于深度度量学习的匿名网络流量关联技术研究[D].南京信息工程大学,2024.

[3]常志华,许国辉.网络攻击检测中基于深度学习的恶意流量识别[J].网络安全技术与应用,2024,(06):43-45.