通信网异常流量多维度感知与自适应调控方法研究

左 灿 邱玉婷 周 燕 曹国庆 中国联合网络通信有限公司东莞市分公司 广东 东莞 523000

摘 要:在数字化转型加速推进的背景下,通信网络作为信息社会的核心基础设施,其安全性与稳定性直接关系到国家安全、经济发展和社会民生。然而,随着网络攻击手段的持续演进,传统单维度流量检测与静态调控方法已难以应对分布式拒绝服务(DDoS)攻击、零日漏洞利用等新型威胁。本文提出一种基于多维度特征融合与动态策略优化的自适应调控框架,通过整合时序特征、空间分布、协议行为及用户画像等多源数据,结合深度强化学习算法实现检测模型的实时更新与调控策略的动态优化。

关键词:通信网络;异常流量检测;多维度感知;自适应调控;深度强化学习

1 引宣

据中国互联网络信息中心(CNNIC)发布的《第55次中国互联网络发展状况统计报告》,2024年我国DDoS攻击次数同比增长47%,单次攻击峰值流量突破3.2Tbps、持续超72小时,加密流量占比攀升至89%,传统检测方法失效率达73%,如2024年某省级政务云平台遭APT攻击长期未察觉致数据泄露。现有网络流量调控体系存在静态阈值困境(如电商平台"双11"误阻断致损失)、单维度检测盲区(如金融机构混合攻击漏报率高)、策略更新滞后(如工业控制系统漏洞攻击致设备瘫痪)等局限。面对5G+工业互联网、车联网等新型场景下网络流量的特征及Gartner对2026年全球物联网设备连接数和数据流量的预测,构建自适应流量调控体系成为保障网络韧性的关键挑战。

2 多维度感知模型构建

2.1 时序特征提取层

流量时间序列蕴含着攻击行为的关键特征。本层采用LSTM-Attention混合模型,结合小波变换多尺度分解,实现流量模式的精准捕捉。

2.1.1 长短期记忆网络(LSTM)

传统RNN存在梯度消失问题,难以处理长序列依赖。LSTM通过引入输入门、遗忘门、输出门机制,有效解决了这一问题[1]。在某运营商骨干网实测中,针对周期性DDoS攻击(如每日固定时段发起的攻击),LSTM模型通过学习历史攻击周期,将检测延迟从传统方法的32秒降低至8.3秒。

2.1.2 注意力机制增强

为聚焦关键时间点特征,引入Bahdanau注意力权重分配。例如,在检测慢速HTTP攻击时,攻击流量与正常流量的区别在于请求间隔的异常延长。注意力机制通过

计算每个时间步的权重,强化这些关键时段的影响。在某数据中心测试中,该方法使隐蔽型CC攻击的识别率从71%提升至89%,其权重计算式为:

$$e_{ij} = v_a^T \tanh(W_a h_t + U_a h_j)$$
$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T} \exp(e_{ik})}$$

其中, h_t 为当前时间步隐藏状态, h_j 为历史时间步隐藏状态, α_i 为注意力权重。

2.1.3 多尺度小波分解

流量信号包含高频(攻击特征)与低频(正常业务)成分。通过小波变换(如Daubechies4小波)将流量分解为不同尺度子带,可有效分离攻击噪声。

2.2 空间分布分析层

网络流量具有天然的拓扑属性。本层构建基于图神经网络(GNN)的流量拓扑模型,结合社区发现算法,实现攻击传播路径的快速定位。

2.2.1 异构图构建

将网络设备(如路由器、交换机)、用户终端、服务节点映射为图节点,通信链路作为边,并附加流量速率、协议类型、丢包率等23维属性。

2.2.2 图注意力聚合

采用图注意力网络(GAT)计算节点间影响力权重。在检测僵尸网络时,攻击者控制的节点会向C&C服务器发送大量心跳包,形成特定的通信模式。GAT通过聚合邻居节点特征,强化这种模式的影响。

2.2.3 社区发现预警

应用Louvain算法划分流量社区,当某社区内节点数量突增300%且内部通信占比超过85%时,触发僵尸网络预警。例如,某云服务商在检测到某VPC内突然形成包含200+节点的密集社区,且所有节点均向同一外部IP发

送数据时,系统立即阻断通信并隔离受感染节点,避免了攻击扩散。

2.3 协议行为解析层

协议是网络通信的"语言",攻击者常通过违反协议规范实施攻击。本层开发深度包检测(DPI)与机器学习融合的协议分析框架,实现加密与非加密流量的深度解析。

2.3.1 协议字段语义解析

通过正则表达式匹配提取HTTP头部、DNS查询、TCP选项等关键字段,结合BERT模型理解字段语义^[2]。例如,在检测DNS隧道攻击时,正常DNS查询的域名长度通常小于63字符,且字符分布符合随机性;而攻击域名可能包含长字符串或重复模式。BERT模型通过预训练学习域名语义特征,在某金融机构测试中,该方法可将误报率从15%降至2.1%。

2.3.2 行为序列建模

使用条件随机场(CRF)模型分析协议交互时序。以TCP握手为例,正常流程为SYN→SYN-ACK→ACK,而攻击者可能发送异常序列(如重复SYN包)或伪造序列号。CRF模型通过学习状态转移概率,成功识别出违反RFC标准的异常TCP握手过程。

2.3.3 加密流量分析

针对TLS/SSL加密流量,采用JA3/JA3S哈希算法提取客户端/服务端握手参数(如支持的密码套件、扩展字段),生成唯一指纹。当检测到异常指纹(如使用弱密码套件或非标准扩展)时,触发预警。在某金融机构网络中,该方法检测出127个使用伪造证书的恶意连接,这些连接通过篡改证书颁发者字段试图绕过检测。

2.4 用户画像构建层

用户行为具有稳定性与规律性,异常行为往往是攻击的先兆。本层建立基于联邦学习的用户行为基线模型,实现隐私保护与精准检测的平衡。

2.4.1 多源数据融合

整合NetFlow日志、AAA认证记录、应用层会话等数据,构建包含访问时段、服务偏好、流量消耗等128维特征的用户画像。例如,某高校学生用户的流量特征为:每日8:00-22:00活跃,主要访问教育类网站(如中国大学MOOC),单日流量消耗不超过5GB;而攻击者控制的账号可能表现出24小时不间断访问、访问异常服务(如境外赌博网站)等特征。

2.4.2 孤立森林异常检测

对每个用户的历史行为序列训练孤立森林模型。孤 立森林通过随机划分特征空间构建决策树,异常点因与

正常点分布不同,通常在较浅的树节点被隔离。当新会话的异常得分超过阈值时触发预警。在某高校网络中,该方法成功识别出盗用账号的恶意下载行为,涉及数据量达2.3TB,其异常得分计算式为:

$$s(x,n) = 2^{-\frac{E(h(x))}{c(n)}}$$

其中,E(h(x))为样本x在决策树中的平均路径长度,c(n)为树的平均路径长度校正项。

2.4.3 隐私保护机制

采用同态加密技术对用户数据进行加密处理。例如,在联邦学习过程中,各参与方(如不同校区网络)仅共享加密后的模型参数,无法获取原始数据^[3]。测试表明,该方法在保证检测准确率(98.2%)的同时,满足《个人信息保护法》要求,用户数据泄露风险降低至10^-9级别。

3 自适应调控策略设计

3.1 动态阈值调整机制

传统静态阈值无法适应流量动态变化,本层设计基于滑动窗口的阈值自适应算法,结合布林带与马尔可夫决策过程,实现阈值的智能调整。

3.1.1 指数加权移动平均(EWMA)

对流量速率进行实时平滑处理,公式为:

$$S_t = \alpha \cdot X_t + (1-\alpha) \cdot S_{t-1}$$

其中, $\alpha=0.3$ 为平滑系数, X_t 为当前观测值, S_t 为动态阈值。

3.1.2 布林带 (BollingerBands)

构建上下轨阈值带,上轨为 S_t + $k \cdot \sigma_t$,下轨为 S_t - $k \cdot \sigma_t$,其中 σ_t 为标准差,k为带宽系数(通常取2)。当流量突破上轨时启动限速策略(如限制单IP连接数),突破下轨时触发流量清洗(如丢弃可疑数据包)。在应对某次300Gbps的DDoS攻击时,系统在47秒内完成策略切换,业务中断时间缩短至8秒,而传统方法需要12分钟。

3.1.3 马尔可夫决策过程(MDP)

将阈值调整建模为状态转移问题,状态空间包含当前流量水平(低、中、高)、攻击类型(DDoS、端口扫描等)、网络负载(空闲、繁忙)等;动作空间包含调整阈值幅度(±5%、±10%等)、切换检测算法(从LSTM切换到GNN)等;奖励函数综合考虑吞吐量提升、延迟降低、策略稳定性等因素,公式为:

 $R_t = \omega_1 \cdot \Delta Throughput + \omega_2 \cdot (1/\Delta Latency) + \omega_3 \cdot (1 - \sigma_{nolicy})$

其中, ω_1 = 0.5、 ω_2 = 0.3、 ω_3 = 0.2为权重系数, σ_{policy} 为策略波动率(如频繁切换阈值导致的震荡)。在模拟环境中,该方法使网络资源利用率提升29%,同时保持QoS达标率超过99.9%。

3.2 智能路由优化算法

路由优化是缓解网络拥塞的关键。本层提出基于深度强化学习的流量调度框架,通过DQN算法学习最优路由策略,结合经验回放机制加速模型收敛。

3.2.1 状态空间设计

包含链路带宽利用率、延迟、丢包率、队列长度等 16维指标,每5秒更新一次。例如,某运营商城域网中, 核心链路带宽为100Gbps,当利用率超过80%时,系统开 始评估路由优化需求。

3.2.2 动作空间定义

支持8种路由调整策略,包括链路权重修改(如将某链路权重从1.0调整为1.5,引导流量绕行)、路径切换(将流量从高负载路径切换到低负载路径)、流量拆分(将大流量拆分为多个小流量通过不同路径传输)等^[4]。

3.2.3 奖励函数构建

综合考虑吞吐量提升、延迟降低、策略稳定性等因素,公式为:

 $R_t = \omega_1 \cdot \Delta Throughput + \omega_2 \cdot (1/\Delta Latency) + \omega_3 \cdot (1-\sigma_{policy})$

其中, ω_1 = 0.4、 ω_2 = 0.4、 ω_3 = 0.2为权重系数。在测试中,该算法使平均延迟降低41%,链路利用率提升至89%,同时避免因频繁路由切换导致的丢包增加(丢包率仅上升0.02%)。

3.2.4 经验回放机制

采用优先经验采样(PrioritizedExperienceReplay)加速模型收敛。传统DQN算法随机采样历史经验进行训练,可能导致重要经验被忽略。优先经验采样根据TD误差(目标Q值与当前Q值的差)分配采样概率,TD误差越大的经验被采样的概率越高。

3.3 协同防御策略生成

单一设备防御存在局限性,本层构建基于软件定义 网络(SDN)的协同调控体系,实现全局视角下的策略 生成与执行。

3.3.1 全局视图构建

通过SDN控制器(如OpenDaylight、ONOS)收集全网拓扑、流量矩阵、设备状态等信息,生成实时网络态势图。例如,某省级运营商核心网包含500+设备,SDN

控制器每秒可处理10万+流量事件,构建包含链路负载、设备CPU使用率、攻击源分布等信息的全局视图。

3.3.2 策略冲突检测

采用时序逻辑(LTL)公式化描述安全策略,通过模型检测工具NuSMV验证策略一致性。例如,某数据中心定义了两条策略:策略A禁止外部IP访问内部数据库,策略B允许特定运维IP访问数据库。若运维IP被攻击者劫持,两条策略将产生冲突。NuSMV通过构建状态迁移图,检测出冲突并生成修复建议(如限制运维IP的访问时段)。在部署中,该方法消除83%的策略冲突,减少因策略矛盾导致的服务中断。

3.3.3 分布式执行引擎

将调控指令拆解为原子操作(如修改ACL规则、调整QoS参数),通过OpenFlow协议下发至交换机。例如,在应对某次多源DDoS攻击时,SDN控制器在12秒内完成23台设备的策略更新,包括限制攻击源IP的带宽、将正常流量引流至清洗中心等。

结语

本文提出的通信网异常流量多维度感知与自适应调控方法,融合多种技术构建了覆盖流量全生命周期的智能防控体系,可有效应对复杂网络攻击、提升网络韧性与运维效率。未来研究将聚焦量子安全扩展、6G网络适配、数字孪生应用三大方向,且随着人工智能等技术的突破,通信网流量调控将向全自动化、智能化演进,为构建下一代信息基础设施提供保障。

参考文献

[1]唐潇潇.面向数据通信网的流量异常检测算法及应用[D].北京邮电大学,2020.

[2]温松.基于智能技术的通信网络流量异常监测方法分析[J].电子技术,2025,54(05):202-203.

[3]朱敬芳,唐萍.基于人工智能的通信网络流量异常监测方法[J].电脑知识与技术,2024,20(29):81-83.

[4]庞建成,樊蒙蒙.基于多标签分类算法的网络通信端口流量异常值快速捕获[J].长江信息通信,2024,37(05):162-164.