计算机应用中的网络安全防护研究

魏 栗 石家庄市城市照明管护中心 河北 石家庄 050000

摘 要: 计算机应用面临系统与硬件、应用与数据、网络连接等多重安全威胁。为应对这些威胁,需综合运用边界防护、数据与身份防护、终端防护等核心技术,搭建包含基础防护层级、防护策略与管理、防护效果评估与优化的防护体系。通过多层级、全方位的防护措施,提升计算机应用的安全性,确保其稳定运行与数据安全,适应不断变化的网络安全环境。

关键词: 计算机应用; 网络安全; 防护技术; 防护体系; 威胁分析

引言:数字化时代,计算机应用渗透至各领域,成为推动社会发展的关键力量。其稳定运行依赖安全环境,但系统漏洞、恶意攻击等威胁频发,严重威胁应用安全。构建完善的网络安全防护体系,成为保障计算机应用安全运行的迫切需求。本文分析计算机应用面临的安全威胁,探讨核心防护技术,提出防护体系搭建方案,为提升计算机应用安全性提供参考。

1 计算机应用中的常见安全威胁

1.1 系统与硬件威胁

系统与硬件是计算机应用运行的基础载体, 其安全 隐患直接影响应用稳定运行, 甚至致使功能失效或数据 泄露。操作系统漏洞是系统层面主要威胁, 因设计时需 兼顾多种功能与设备兼容,复杂代码编写和逻辑设计易 出现缺陷或漏洞。部分漏洞在系统发布初期未被察觉, 随应用场景拓展和技术迭代逐渐暴露。计算机应用依赖 存在漏洞的操作系统时, 攻击者可借此绕过安全验证, 获取系统控制权,篡改或破坏应用程序,导致应用无法 正常服务,敏感信息易被窃取。硬件设备隐患中,固件 问题较为典型。固件是嵌入硬件的程序, 主板、硬盘、 网卡等均依靠固件运行。若固件开发缺乏严格安全校 验,易存在漏洞[1]。攻击者利用这些漏洞,修改固件程序 改变硬件运行逻辑。例如, 硬盘固件问题可能导致存储 数据无法读取,应用关键数据丢失,中断应用运行;网 卡固件漏洞可能导致网络数据传输泄露, 应用交互数据 被截取。此外,硬件长期使用会出现部件老化或故障, 如内存故障使应用运行数据出错, CPU性能下降减缓应 用处理速度,这些问题虽非人为攻击,仍影响应用稳定 性与安全性。

1.2 应用与数据威胁

应用程序是计算机应用实现功能的核心,数据是应用处理的关键对象,二者安全威胁直接关乎应用功能价

值与数据安全。应用程序缺陷多源于开发阶段不规范操 作。应用开发历经需求分析、代码编写、测试等环节, 若开发人员缺乏安全意识,未遵循安全编码规范,易留 下输入验证不严格、权限控制不完善等隐患。这些缺陷 使应用成为安全薄弱点, 攻击者可利用输入验证漏洞注 人恶意代码,篡改应用逻辑,导致应用功能异常;权限 控制缺陷可能让未授权用户获取高级权限, 修改应用配 置或删除关键文件,破坏应用完整性。数据传输安全风 险源于网络环境不确定性。应用处理数据时,常需在不 同设备或系统间传输,如用户数据传输至服务器处理后 反馈至用户设备。数据传输经过多个网络节点, 若未采 取安全措施,易被非法节点拦截。拦截数据可能被查看 或篡改,导致接收方获取虚假数据,影响应用基于数据 的判断或操作。数据存储安全风险与存储介质和方式相 关。应用数据多存储在硬盘、U盘、云存储等介质中, 若 存储介质未加密,一旦丢失或被非法访问,数据可能被 窃取或删除。比如,应用用户信息存储在未加密硬盘分 区, 硬盘被他人获取后, 用户信息易被读取, 造成隐私 泄露,影响应用用户信任度。

1.3 网络连接威胁

计算机应用多依赖网络连接实现数据交互与功能拓展,网络连接安全威胁直接影响数据传输安全与应用可用性。网络协议漏洞是网络层面重要隐患,网络协议是设备间数据交换规则,如TCP/IP协议族是互联网常用协议。部分早期协议设计时侧重传输便捷性与效率,未充分考虑安全,导致存在安全缺陷。随网络技术发展,这些漏洞逐渐显现,攻击者可利用漏洞发起攻击,如伪装合法设备与应用连接获取传输数据,或发送异常数据包导致应用网络模块崩溃,中断应用网络功能。不安全接入是用户使用应用时易遭遇的威胁,公共网络场景下问题尤为突出。公共WiFi为满足大量用户接入,通常

未采取严格身份认证与数据加密,网络环境开放且缺乏 监管。用户在公共网络使用应用时,应用与服务器传输 数据易被其他用户截取。此外,公共网络中可能存在攻 击者搭建的虚假接入点,伪装合法公共网络。用户误连 后,应用发送的所有数据会传输至攻击者设备,攻击者 可查看或篡改数据,甚至植入恶意程序,监控用户操作 获取敏感信息。家庭或企业内部网络若未配置合理防 护,也可能面临非法接入风险,攻击者通过破解密码或 利用设备漏洞接入网络,对应用发起攻击。

2 核心网络安全防护技术

2.1 边界防护技术

边界防护技术是计算机应用与外部网络交互的第一 道安全屏障,通过构建网络边界防护规则,阻挡非法访 问与恶意攻击,保障应用运行环境的基础安全。防火墙 作为边界防护的核心技术,基础作用是依据预设安全策 略对网络流量进行过滤与管控[2]。它能识别网络数据的 来源地址、目标地址、传输协议及端口信息,按预设规 则判断数据是否允许通过。外部设备试图与应用所在内 部网络建立连接时,防火墙会检查连接请求的来源IP与 端口,符合规则则放行数据传输,未授权请求则直接阻 断,避免外部非法数据干扰应用运行。入侵检测系统通 过实时监测网络流量与系统行为, 及时发现潜在攻击并 发出告警。它持续收集网络数据传输信息与应用运行日 志,对比已知攻击特征库与异常行为模式,识别入侵迹 象。网络中出现异常数据包传输、频繁端口扫描或应用 异常调用时,入侵检测系统会触发告警机制,通知管理 人员关注风险, 为安全处置争取时间。入侵防御系统在 入侵检测基础上增加主动阻断功能, 既能识别攻击行 为,又能自动采取防护措施阻止攻击继续。检测到外部 设备向应用发起恶意数据包攻击时, 可直接切断攻击连 接或修改网络规则屏蔽攻击源IP, 避免攻击对应用造成实 际损害。这类边界防护技术相互配合,从"过滤-检测-防 御"三个层面构建网络边界安全防线,减少外部威胁对 应用的直接冲击。

2.2 数据与身份防护技术

数据与身份防护技术聚焦计算机应用的核心资产与 访问权限管控,通过保障数据安全与规范身份验证,防 止敏感信息泄露与未授权访问。数据加密技术通过特定 算法将原始数据转换为不可直接读取的密文,仅掌握解 密密钥的授权主体能将密文还原为明文。在计算机应用 中,数据加密可应用于数据传输与存储两个关键环节。 数据传输时,加密技术能保护应用与服务器、用户设备 与应用间交互的数据,即使数据被非法截取,截取者因 缺乏解密密钥无法获取实际内容, 避免传输环节信息泄 露。数据存储时,加密技术可对应用存储在硬盘、云服 务器等介质中的敏感数据进行加密,即使存储介质丢失 或被非法访问,加密后的数据也难以被破解,保障存储 安全性。身份认证技术通过验证用户或设备身份信息, 确保仅授权主体能访问应用及相关资源。密码认证是最 基础的方式,用户需输入预设密码,应用系统通过比对 密码正确性判断身份合法性。但单一密码认证存在安全 风险,密码若被窃取或破解,未授权者可能冒充合法用 户访问应用。多因素认证在密码认证基础上增加额外验 证维度,结合用户拥有的物品(如手机验证码)、自身 生物特征(如指纹、面部识别)等进行验证。用户输入 正确密码后,还需通过手机接收验证码输入系统,或通 过指纹识别完成二次验证, 所有环节通过才能成功访问 应用。这种多维度认证大幅提升身份验证安全性,降低未 授权访问风险, 为应用访问权限管控提供更可靠保障。

2.3 终端防护技术

终端防护技术针对计算机应用运行的终端设备构建 防护体系,通过管控终端状态与防御恶意程序,保障应 用在终端层面安全。终端安全管理技术统一管控终端 硬件、软件及运行状态,监测硬盘、内存等硬件状态, 及时发现故障或异常连接;管理软件安装与运行,限制 未授权软件,防止恶意软件或有漏洞的软件威胁应用; 还能统一配置安全参数,如设置系统补丁更新策略、规 范网络连接设置,确保终端符合安全要求。恶意代码防 护技术识别与清除终端中的恶意程序, 阻止其破坏应用 与窃取数据。恶意代码包括病毒、木马等,通过感染文 件、伪装正常软件进入终端[3]。防护技术通过特征码检 测比对文件与已知恶意代码特征,清除含恶意特征的文 件;通过行为分析监测程序运行,识别未授权读取数 据、修改应用配置等恶意行为并拦截。终端中出现修改 应用关键文件的程序时, 技术会识别异常并阻止操作, 减少恶意程序攻击,保障应用完整性与稳定性。

3 网络安全防护体系搭建

3.1 基础防护层级

基础防护层级是网络安全防护体系的核心框架,通过覆盖物理安全、网络安全、主机与应用安全的简单架构,为计算机应用构建多层级安全防护基础。物理安全作为底层支撑,聚焦应用运行所需物理环境与硬件设备的安全。它管控机房人员进出权限,避免未授权人员接触服务器、网络设备等关键硬件;同时为服务器配备防尘、防潮、防电磁干扰装置,防止硬件因环境或人为因素故障,保障应用运行的硬件基础稳定。网络安全承担

内外网络连接的安全管控职责,通过防护机制阻挡外部 威胁进入内部网络。这一环节采用网络分区策略,将内 部网络划分为办公区域、核心业务服务器区域等安全区 域,区域间设访问控制规则,限制随意数据交互,减少 单一区域被攻击后的风险扩散。同时部署防火墙、入侵 防御系统,实时监测与过滤网络流量,拦截非法访问请 求与恶意数据包,保障网络数据传输安全,为应用提供 安全的网络环境。主机与应用安全针对应用运行的核心 载体,聚焦主机系统与应用程序防护。主机安全方面, 对操作系统进行安全加固,关闭不必要的服务与端口, 及时安装补丁修复漏洞,防止攻击者入侵;同时配置主 机访问权限, 明确用户操作权限, 避免未授权用户修改 配置或获取敏感信息。应用安全方面, 开发阶段引入安 全测试排查缺陷与隐患;运行阶段监测应用状态,及时 发现异常资源占用、错误日志等行为,避免应用因安全 问题中断或泄露数据。

3.2 防护策略与管理

防护策略与管理是防护体系有效运行的保障,通过 制定日常安全规则与培养人员安全意识,将防护融入应 用使用全流程。日常安全规则结合应用特点与需求, 形成可执行规范。数据管理方面,明确数据分类标准, 对不同敏感数据制定存储、传输与销毁规则, 如敏感数 据加密存储、传输用安全协议、废弃数据用专业工具删 除,防止泄露。设备管理方面,规范终端使用流程,如 设复杂登录密码并定期更换,禁止接入不明存储介质, 防止恶意软件侵入。人员安全意识培养是关键环节,通 过提升认知减少人为操作失误风险[4]。开展定期安全培 训, 讲解网络钓鱼、恶意代码攻击等威胁, 介绍辨别虚 假邮件、可疑文件的方法。同时通过案例让人员了解不 安全操作后果,如点击可疑链接致终端入侵、用弱密码 致账号被盗。此外制定考核机制,定期检验人员对安全 规则的掌握程度,督促其将规范融入日常,形成良好习 惯,从人员层面支撑防护体系。

3.3 防护效果评估与优化

防护效果评估与优化是防护体系持续完善的重要环 节,通过明确评估维度与优化方向,确保体系适应应用 安全需求。评估维度围绕核心功能设定,全面衡量运 行效果。威胁拦截率是重要维度,通过统计对已知威胁 的拦截数量,判断防护技术与策略的阻挡能力,如防火 墙拦截非法访问、恶意代码防护识别清除恶意程序的情 况。漏洞修复时效是关键维度,记录漏洞发现至修复时 间,评估体系对隐患的响应速度,避免漏洞长期存在给 攻击者可乘之机。此外评估体系资源占用,判断对应用 性能的影响,如是否致应用变慢、终端资源消耗过高, 确保安全与应用使用兼顾。基于评估结果的优化需针对 问题制定措施,提升体系安全性与适应性。若某类威胁 拦截率低,分析威胁特征与防护不足,补充技术或更新 策略,如针对新型恶意代码升级防护特征库,增强识别 能力。若漏洞修复时效不达标,优化管理流程,建立高 效发现与修复机制,如增加扫描频率、明确修复责任与 时间,加快修复速度。若资源占用过高,调整防护配 置,选轻量化方案,在保效果的同时降低对应用性能的 影响。通过持续评估与优化, 使防护体系应对变化的威 胁, 为应用提供长期稳定的安全保障。

结束语

计算机应用中的网络安全防护是系统性工程,需综合技术、管理与策略等多方面因素。通过构建多层级防护体系,结合边界、数据、终端等防护技术,并强化日常安全管理与人员意识培养,可显著提升应用安全性。未来,随着网络安全威胁的不断演变,需持续优化防护体系,以适应新的安全挑战,确保计算机应用的安全稳定运行。

参考文献

[1]张敏.计算机应用中的网络安全防护研究[J].中国新通信,2024,26(23):41-43.

[2]周运科.大数据背景下计算机网络安全与防护措施 [J].数字通信世界.2024.(11):95-97.

[3]刘明珍.计算机应用中网络安全防护体系构建的分析[J].数字技术与应用,2024,42(08):75-77.

[4]魏恩志.计算机应用中网络安全防护体系构建研究 [J].石河子科技,2022,(06):30-32.