电子技术及通信工程的协同发展

陈晓龙

山东省邮电工程有限公司青岛分公司 山东 青岛 266000

摘 要:本文探讨电子技术与通信工程的协同发展,分析两者技术基础关联,电子技术为通信工程提供硬件支撑,通信工程拓展电子技术应用场景。阐述技术层面协同体现,涵盖信号处理、网络架构、终端设备三大领域。剖析协同对产业的影响,既推动云计算、人工智能等新兴产业崛起,也促进制造、农业等传统产业转型升级。最后展望未来趋势,包括技术融合深化、绿色节能发展及面向智能交通、智慧城市等场景的创新,为两者协同发展提供全面参考。

关键词: 电子技术; 通信工程; 协同发展; 产业影响; 未来趋势

引言:电子技术与通信工程是现代信息技术体系的核心组成部分,电子技术的硬件研发与通信工程的网络构建相互依存。当前,单一技术发展面临瓶颈,高速通信、智能应用等需求推动两者深度协同。电子元件升级支撑通信设备性能提升,通信场景拓展驱动电子技术创新。研究两者协同发展,对突破技术局限、推动产业升级、满足社会多样化需求具有重要意义,助力构建更高效的信息技术生态。

1 电子技术与通信工程的技术基础关联

1.1 电子技术为通信工程提供硬件支撑

电子元件是通信设备运行的核心基础,各类电子元 件通过合理搭配构成通信设备的关键模块,支撑设备完 成信息接收、处理与传输等功能[1]。晶体管作为基础电子 元件, 在通信设备中承担信号放大作用, 将微弱的输入 信号增强至可传输的强度,集成电路则进一步整合多个 晶体管及其他元件,实现对通信信号的综合处理,包括 信号滤波、调制等, 让复杂的信号处理流程在小型化芯 片上完成。传感器在通信系统中负责信息采集,通过感 知环境中的温度、压力、声音等物理量,将其转化为电 信号传递给通信设备,为通信数据传输提供原始信息来 源。电路设计直接影响通信性能,不同的电路结构与参 数配置,会带来通信速率、稳定性等方面的差异。模拟 电路与数字电路在信号转换和传输中存在明显不同,模 拟电路以连续变化的电信号传递信息,适用于需要保留 信号细节的场景,数字电路则将信号转化为离散的数字 代码进行传输, 抗干扰能力更强, 两者根据通信需求的 不同灵活应用。电路稳定性与通信质量紧密相关, 电路 若出现电压波动、噪声干扰等不稳定问题,会导致通信 信号失真、丢包,影响信息传输的准确性与完整性,因 此电路设计中需通过合理的供电设计、屏蔽措施等保障 稳定性。

1.2 通信工程为电子技术拓展应用场景

通信需求是电子技术创新的重要驱动力, 随着通信 场景不断丰富,对电子技术的功能与性能提出更多要 求,推动电子技术持续突破。高速通信场景下,数据传 输速率大幅提升,这就要求电子元件具备更快的响应速 度和更高的处理能力,促使电子元件在材料选择、结构 设计上不断优化,以满足高速传输对延迟、带宽的需 求。通信网络规模扩大与功能升级,使其复杂性逐渐增 加,为实现对网络的高效管控,电子系统需不断提高集 成度,将更多功能模块整合到单一系统中,减少设备体 积的同时提升运行效率。通信技术发展过程中, 电子技 术的融合应用愈发深入。软件定义无线电通过电子信号 处理技术, 实现对通信信号的数字化处理与灵活调控, 摆脱传统硬件对通信功能的限制, 让通信设备能适应不 同的通信协议与频段。光纤通信凭借高带宽、低损耗的 优势广泛应用,其中光电子器件发挥关键作用,激光二 极管将电信号转化为光信号, 光电探测器再将光信号还 原为电信号,这一过程依赖光电子器件的精准转换能 力,也为光电子技术的发展提供了重要应用场景。

2 电子技术与通信工程协同发展的技术层面体现

2.1 信号处理领域的协同

电子技术中的信号处理算法深度融入通信传输全过程,数字滤波、傅里叶变换等算法成为通信信号优化的核心支撑。滤波算法通过精准识别信号中的噪声成分,针对性削弱电磁干扰与信道衰减带来的杂波,让通信信号保持清晰稳定,尤其在复杂电磁环境下,自适应滤波算法能根据环境变化动态调整参数,进一步提升抗干扰能力^[2]。编码解码算法采用纠错编码技术,在数据传输前对信息进行特殊编码,接收端通过解码还原数据,即便传输中出现少量错误也能及时修正,保障通信数据准确抵达,像语音通信中常用的编码技术,还能在保证传输

质量的同时压缩数据量,节省信道资源。通信工程的快速发展对电子信号处理提出新挑战,高速通信场景下,数据传输速率大幅提升,要求电子信号处理技术具备实时处理能力,在极短时间内完成信号的采集、转换与分析。多用户同时接入通信网络时,不同用户信号相互叠加,电子信号处理需实现高效的信号分离与提取,精准区分每个用户的信息,避免信号混淆影响通信质量,这推动电子信号处理算法不断优化升级。

2.2 网络架构层面的协同

电子技术为通信网络搭建坚实的硬件基础,构成通 信网络的各类设备均依赖电子技术实现功能。交换机通 过内部电子芯片的逻辑运算, 快速完成数据帧的转发与 交换, 高端交换机搭载的多核心处理芯片, 能同时处理 上千条数据链路的传输需求;路由器借助电子元件组成 的路由选择模块,精准判断数据传输路径,智能路由算 法还能根据网络负载动态调整路径,避免拥堵。网络拓 扑结构设计中, 电子元件的布局需兼顾信号传输效率与 稳定性,核心节点的电子设备需具备更强的信号处理与 分发能力,边缘节点则侧重设备的兼容性与扩展性,确 保整个网络架构高效运转。通信网络的迭代反过来驱动 电子技术革新,新一代网络对数据传输速率与延迟要求 严苛,促使电子芯片向高性能、低功耗方向发展,通过 优化芯片架构与制程工艺,提升数据处理速度并减少能 源消耗。物联网通信网络连接海量终端设备,推动电子 设备向小型化、智能化转型, 电子元件集成度不断提 高,设备体积缩小的同时,还能通过内置智能芯片实现 自主数据采集与传输,像智能传感器节点,可自主完成 数据预处理与按需传输,降低网络负担。

2.3 终端设备方面的协同

电子技术持续提升通信终端设备的综合性能,智能 手机的处理器性能迭代让多任务处理与高速数据运算成 为可能,旗舰机型搭载的多核处理器,能同时支撑高 清视频通话、后台应用运行与数据同步等多项任务;高 清显示屏采用的新型电子显示技术,呈现更清晰的通信 界面与内容,柔性屏技术还让终端设备形态更灵活,适配不同使用场景。可穿戴设备将多种电子传感器集成于 小巧机身,心率、位置等传感器实时采集数据,通过电子模块处理后传输至通信模块,实现健康监测与信息交互,部分设备还能通过低功耗通信技术,在极小电量消耗下维持长时间数据传输。通信功能需求主导电子终端的设计方向,不同通信协议对终端设备硬件接口有明绝规范,推动终端设备接口标准化,确保与各类通信网络兼容。面对移动办公、户外直播等不同通信场景,终端

设备形态与功能随之调整,移动场景下终端侧重便携性 与续航能力,通过优化电子元件功耗实现长待机;高清 通信场景则强化终端的信号接收与数据处理能力,配备 高性能天线与处理芯片,保障通信效果。

3 电子技术与通信工程协同发展的产业影响

3.1 推动新兴产业崛起

电子信息产业与通信产业深度融合,打破传统产业边 界,形成更具竞争力的产业形态。电子元件的微型化与通 信网络的高速化相互支撑, 让产业产品兼具更强性能与 更广连接能力。云计算产业依赖电子技术构建的高性能 服务器集群, 搭配通信工程搭建的高速网络, 实现海量 数据的远程存储与快速调取,分布式存储技术结合广域 通信网络,还能提升数据存储的安全性与容错性;大数 据产业借助电子技术的高效数据处理芯片,结合通信网 络的实时数据传输,完成对复杂数据的分析与挖掘[3]。人 工智能领域中, 电子技术研发的高算力芯片为算法运行 提供硬件支撑,通信工程构建的神经网络通信架构,让 智能设备实现高效协同,推动人工智能应用场景不断拓 展。两者协同还催生全新商业模式与业态,共享经济依 托通信网络实现用户与资源的精准匹配, 电子支付技术 则通过与通信模块的集成,完成交易资金的实时划转; 远程医疗领域,通信工程保障高清医疗影像与诊疗数据 的稳定传输, 电子医疗设备将患者生理数据转化为可传 输的数字信号, 让异地诊疗与远程会诊成为现实, 部分 远程手术场景中, 低延迟通信技术与高精度电子手术设 备的协同,还能提升手术操作的精准度。

3.2 促进传统产业转型升级

制造业借助两者协同加速向智能化转型,工业互联 网通过电子技术在设备上安装的各类传感器, 采集生产 过程中的温度、压力等数据,通信工程构建的工业网络 将这些数据实时传输至控制中心,实现设备间的互联互 通与信息共享。智能制造场景中,通信网络根据生产需 求,对电子控制的生产流程进行动态优化,调整设备运 行参数与生产节拍,提升生产效率与产品质量,柔性生 产线上, 电子控制模块与无线通信的配合, 还能快速切 换生产品类。农业领域也因两者协同焕发新活力,农业 物联网中, 电子传感器实时监测土壤湿度、光照强度等 环境信息,通过通信网络将数据传递至管理平台;精准 农业依托这些数据,利用电子技术控制的灌溉设备、施 肥装置,按照作物生长需求进行精准供给,减少资源浪 费的同时提高农业产出,无人机搭载的电子监测设备与 通信模块结合,还能实现大面积农田的巡检测绘。传统 产业在两者协同作用下,生产模式更高效、管理更精

准,逐步摆脱传统发展瓶颈,迈向高质量发展阶段。

4 电子技术与通信工程协同发展的未来趋势

4.1 技术融合的深化方向

量子通信与量子电子技术的结合成为重要探索方 向,两者协同有望突破传统技术局限。量子纠缠特性可 应用于通信安全领域,借助量子电子器件构建的加密传 输系统,能让通信数据具备不可破解的安全属性;同时 量子纠缠在电子信号处理中展现独特潜力,可提升信号检 测与识别的精度,应对复杂环境下的信号处理难题[4]。量 子计算为通信网络与电子系统带来性能跃升,量子计算 芯片与通信网络协同, 能快速处理海量通信数据, 优化 网络资源调度;融入电子系统后,可提升设备逻辑运算 能力,推动电子终端向更高智能水平发展。太赫兹通信 与太赫兹电子技术的协同探索持续推进,太赫兹波具备 超大带宽优势,能实现远超现有技术的高速数据传输, 满足未来超高清视频、全息通信等场景需求。但太赫兹 通信面临电子技术挑战,太赫兹波段信号衰减快,需研 发高性能太赫兹电子器件增强信号发射与接收能力,相 关器件的小型化、低功耗成为核心研发方向, 助力太赫 兹通信系统走向实用化。

4.2 绿色节能导向下的协同发展新路径

电子技术为通信工程节能降耗提供关键支撑,低功耗电子芯片广泛应用于基站、路由器等通信设备,通过优化芯片架构与制程,大幅降低设备运行时的能源消耗,减少长期运营中的电力投入。高效电源管理电子技术进一步优化通信系统能源分配,根据通信设备不同时段的负载变化,动态调节供电功率,避免能源闲置浪费,提升整体能源利用效率。通信工程反向推动电子技术绿色创新,通信网络对设备能效的高标准要求,促使电子技术研发更注重节能性能,推动电子元件向低功耗、长寿命方向发展。同时借助通信技术构建的远程监测网络,可实时采集电子设备的能耗数据,通过智能算法分析能耗异常,远程调控设备运行状态,实现电子设备能耗的精细化管理,减少不必要的能源消耗。

4.3 面向未来应用场景的发展

智能交通领域的协同创新不断深化, 车联网依托电 子技术与通信工程实现车辆全面智能互联。车载电子传 感器实时采集车辆行驶速度、周边环境等信息,通过专 用通信网络与其他车辆、道路基础设施完成数据交互, 让车辆提前感知路况变化,甚至实现多车协同换道、编 队行驶。自动驾驶中,通信网络保障数据实时传输,电 子传感器精准捕捉行车环境,两者协同构建多层安全防 护体系,降低自动驾驶事故风险。智慧城市建设中,电 子技术与通信工程实现全面协同,城市物联网通过部署 大量电子感知设备,覆盖交通、能源、安防等领域,通 信网络将这些设备连接成统一整体,实现城市运行数据 的全面采集与共享。城市管理中, 电子技术对海量数据 进行分析处理,结合通信网络传递的实时信息,为交通 调度、应急处置、能源分配等提供决策支持,推动城市 管理向智能高效方向转型,提升城市运行效率与居民生 活品质。

结束语

电子技术与通信工程的协同发展是信息技术进步的 必然趋势,从技术基础关联到多领域协同应用,再到产 业变革推动,形成完整发展链条。两者的深度融合打 破技术与产业边界,为社会发展注入动力。未来,需持 续深化技术创新,探索绿色节能路径,适配多元应用场 景,推动协同向更高水平迈进,为数字时代的技术突破 与产业升级提供坚实支撑。

参考文献

- [1]王星棋.大数据时代电子技术在有线通信工程中的应用[J].信息记录材料,2025,26(03):117-119.
- [2]雪松.探析电子技术在通信工程中的应用策略[J].中国科技投资,2024,(23):16-18.
- [3] 贾丰,王智.电子技术与通信工程的融合发展[J].中国新通信,2024,26(12):4-6.
- [4]饶文.电子技术在通信工程中的应用研究[J].中国新通信,2024,26(05):4-6.