基于深度学习的5G智能终端射频信号干扰抑制技术

李宣宏 维沃移动通信有限公司 广东 东莞 523859

摘 要:在5G通信高速发展的大背景下,5G智能终端广泛应用于各个领域。本文聚焦基于深度学习的5G智能终端射频信号干扰抑制技术。首先阐述5G射频干扰特点,包括高频段易受干扰、干扰类型多样复杂以及干扰动态变化。接着介绍关键技术,涵盖干扰信号识别、自适应信号滤波、多域联合抗干扰、实时性优化及对抗攻击防御技术。最后探讨发展趋势,涉及模型优化与轻量化、多技术融合、面向6G的研究以及智能自适应与动态优化,旨在为5G通信稳定运行提供技术支撑。

关键词:深度学习;5G智能终端;射频信号干扰抑制;关键技术

引言:随着5G技术的广泛应用,智能终端在高速通信中发挥着愈发关键的作用。然而,射频信号干扰问题严重影响5G通信质量,制约其性能发挥。传统干扰抑制方法在应对5G复杂多变的干扰环境时,逐渐暴露出局限性。深度学习凭借强大的数据分析和模式识别能力,为5G智能终端射频信号干扰抑制提供了新思路。通过深度学习技术,能够更精准地识别干扰信号,并采取有效措施抑制干扰,保障5G通信的稳定性和可靠性,推动5G技术持续发展。

1 基于深度学习 5G 射频干扰的特点

1.1 高频段易受干扰

5G采用高频段通信以获取更宽带宽,但高频信号传播特性使其更易受干扰。高频信号在传播中路径损耗大、绕射能力弱,易被障碍物阻挡。同时,大气吸收、降雨等因素对高频信号影响显著,导致信号衰减加剧。此外,高频段频谱资源紧张,众多设备共用频段,相互干扰频繁。

1.2 干扰类型多样且复杂

5G射频干扰类型丰富多样且复杂交织。既有来自同 频段其他通信设备的同频干扰,也有不同频段信号间的 互调干扰;还有自然环境产生的噪声干扰,以及人为恶 意攻击形成的干扰。这些干扰在时域、频域和空域上表 现出不同特征,传统方法难以全面有效应对。深度学习 凭借其强大的特征提取和模式识别能力,能够自动学习各种干扰的特征模式,实现对复杂干扰的精准分类与识别,为后续采取差异化抑制策略奠定基础。

1.3 干扰动态变化

5G网络中,用户移动性、业务多样性以及网络拓扑的动态变化,使得射频干扰处于不断变化之中。用户在不同场景下切换,会遭遇不同类型和强度的干扰;业务流

量的实时波动也会影响干扰状况;网络拓扑改变时,信号传播路径变化,干扰分布随之改变。深度学习具有自适应学习优势,可实时监测干扰变化,动态调整模型参数,快速适应干扰的动态特性,持续提供有效的干扰抑制,保障5G通信在不同场景和动态环境下的稳定运行[1]。

2 基于深度学习的 5G 智能终端射频信号干扰抑制关键技术

2.1 干扰信号识别

干扰信号识别是基于深度学习的5G智能终端射频信 号干扰抑制的首要环节,其精准性直接影响后续抑制效 果。(1)深度学习凭借强大的特征提取能力,可自动 挖掘干扰信号的深层次特征。传统方法依赖人工设计特 征,难以应对5G复杂多变的干扰场景。而深度学习模 型,如卷积神经网络(CNN),能通过多层卷积和池化 操作,从原始射频信号中自动学习到不同频段、不同类 型干扰的独特特征模式,无需人工干预即可实现特征的 全面表征,为准确识别干扰奠定基础。(2)深度学习模 型具备强大的分类能力,可对干扰信号进行精准分类。 在5G环境中,干扰类型多样,如同频干扰、邻频干扰、 互调干扰等。深度学习模型通过训练大量标注的干扰信 号数据, 能够学习到各类干扰信号与正常信号之间的差 异,从而在面对实际干扰时,快速准确地将干扰信号归 类到相应类型,为后续采取针对性的抑制策略提供依 据。(3)深度学习可实现干扰信号的实时识别。5G通 信具有高速率、低时延的特点,干扰信号可能随时出现 且动态变化。深度学习模型经过优化后,能够在智能终 端上快速处理接收到的射频信号,实时判断是否存在干 扰以及干扰的类型,确保在干扰发生的瞬间就能做出响 应,保障通信的连续性和稳定性。

2.2 自适应信号滤波

自适应信号滤波是基于深度学习的5G智能终端射频信 号干扰抑制的关键技术之一,能有效应对复杂多变的干扰 环境,提升信号质量。(1)深度学习赋予自适应滤波强 大的学习能力。传统自适应滤波算法的参数调整往往基于 固定的数学模型和预设规则,难以适应5G场景中干扰的多 样性和动态性。而深度学习模型可以通过大量干扰信号和 期望信号的数据进行训练,自动学习到滤波参数与干扰特 征之间的复杂映射关系。在面对不同类型的干扰时,模 型能够根据实时输入的信号特征, 快速准确地调整滤波 参数,实现对干扰的有效抑制,相比传统方法具有更高 的灵活性和适应性。(2)深度学习可实现滤波器的动态优 化。5G通信中,干扰信号的强度、频率等特性会随时间 和环境不断变化。深度学习驱动的自适应滤波能够实时 监测信号的变化情况,通过在线学习机制持续更新模型 参数, 使滤波器始终保持最优的工作状态。这种动态优 化能力确保了滤波器在不同干扰场景下都能发挥良好的 性能,有效降低干扰对5G智能终端通信的影响。(3)深度 学习有助于提升自适应滤波的精度。深度学习模型具有 强大的非线性拟合能力, 能够更精确地分离干扰信号和 有用信号。通过对信号的精细处理,减少有用信号的损 失,同时更彻底地抑制干扰,从而提高5G智能终端通信 的可靠性和稳定性,为用户提供更优质的通信体验。

2.3 多域联合抗干扰

在复杂多变的电磁环境与信息对抗场景下,多域联 合抗干扰成为保障系统稳定运行的关键策略。(1)多域 联合抗干扰需整合频域资源。频域是信号传输的基础载 体,不同频段具有独特特性。通过合理规划与动态分配 频谱,可避免信号间的相互干扰。对关键业务,优先分 配抗干扰能力强的频段,同时利用先进的频谱感知技 术,实时监测频段使用情况,及时调整信号传输频段, 确保信号在频域层面稳定可靠。(2)空域协同是重要环 节。借助多天线技术与阵列信号处理,构建空域滤波 器,有效抑制来自特定方向的干扰信号。通过优化天线 布局,形成空间波束,增强期望信号接收能力,同时削 弱干扰信号影响。(3)时域处理不可或缺。采用先进的信 号调制与解调技术,提高信号在时域的抗干扰能力。通 过时域滤波、脉冲压缩等手段,有效抑制脉冲干扰与窄 带干扰。同时,结合自适应算法,根据干扰实时变化动 态调整时域处理参数,确保系统在复杂时变干扰环境下 仍能保持良好性能。多域联合抗干扰通过频域、空域、 时域的协同作用,构建起全方位、多层次的抗干扰防护 体系,为信息系统的安全稳定运行提供坚实保障。

2.4 实时性优化技术

在基于深度学习的5G智能终端射频信号干扰抑制中,实时性优化技术至关重要,它直接关系到系统能否在干扰出现的瞬间做出有效应对。(1)模型轻量化是提升实时性的关键基础。深度学习模型往往结构复杂、参数量大,这会导致计算耗时增加。通过采用模型剪枝技术,去除模型中冗余的神经元和连接,在保证模型性能基本不受影响的前提下,大幅减少模型规模。同时,运用量化技术,将模型中的浮点数参数转换为低精度的定点数,降低计算复杂度,加快模型推理速度,使模型能够在智能终端上快速运行,满足实时处理的需求。(2)优化算法并行处理能力不可或缺。利用硬件的并行计算特性,如GPU、NPU等,将深度学习模型的计算任务分解为多个子任务,并行执行。通过合理设计并行算法,充分挖掘硬件的并行计算潜力,缩短计算时间。

(3)智能调度与资源管理是实时性优化的重要保障。 根据干扰信号的实时变化情况,动态调整深度学习模型 的运行频率和资源分配。在干扰较弱时,适当降低模型 运行频率,节省系统资源;当检测到强干扰时,迅速提 高模型运行频率,集中资源进行干扰抑制,确保系统始 终能够及时响应干扰变化。

2.5 对抗攻击防御技术

在基于深度学习的5G智能终端射频信号干扰抑制领 域,对抗攻击防御技术是保障系统安全稳定运行的关键 防线,可有效抵御恶意攻击者对深度学习模型的破坏。 (1)模型鲁棒性增强是核心策略。深度学习模型在训练过 程中,通过引入对抗样本生成与对抗训练机制,让模型 提前接触并学习对抗干扰的特征。在训练数据中添加精 心设计的微小扰动,模拟对抗攻击,使模型在面对真实 攻击时能够保持性能稳定。同时,采用正则化方法,如 L1、L2正则化,限制模型参数的取值范围,防止模型过 拟合对抗样本,增强模型对各类干扰的泛化能力,提升 其鲁棒性。(2)输入数据预处理是重要防护手段。对进入深 度学习模型的射频信号数据进行预处理, 如数据归一化、 滤波降噪等操作,去除数据中的异常值和噪声干扰,降低 对抗样本对模型的影响。(3)实时监测与动态调整是有效补 充。建立实时监测机制,对深度学习模型的输出结果进行 持续监控, 一旦发现异常输出, 及时触发预警并采取相 应措施。同时,根据监测结果动态调整模型的参数或结 构, 使模型能够快速适应不断变化的攻击手段, 确保在 复杂的电磁环境中始终具备可靠的干扰抑制能力[2]。

3 基于深度学习的 5G 智能终端射频信号干扰抑制技术的发展趋势

3.1 模型优化与轻量化

随着5G智能终端对实时性、低功耗要求的提升,深度学习模型的优化与轻量化成为核心趋势。传统模型在复杂干扰场景下存在计算冗余,导致终端设备能耗过高、响应延迟。未来技术将聚焦于模型结构创新,如通过知识蒸馏将大型模型压缩为轻量级网络,在保持干扰抑制精度的同时降低参数量;引入神经架构搜索(NAS)技术,自动生成针对特定终端硬件优化的模型结构,实现计算效率与性能的平衡。此外,量化训练技术将进一步发展,通过降低模型权重精度,显著减少内存占用和计算资源消耗,使深度学习算法能够高效部署于资源受限的智能终端,满足5G场景下低时延、高可靠性的需求。

3.2 多技术融合

深度学习与多技术融合是突破单一方法局限的关键路径。一方面,与通信信号处理技术深度结合,例如将深度学习模型嵌入传统自适应滤波器,利用神经网络提取干扰特征并动态调整滤波参数,提升复杂电磁环境下的抗干扰能力;另一方面,与边缘计算、物联网技术协同,通过终端-边缘-云端协同处理,实现干扰数据的分布式学习与全局优化,降低终端计算压力。此外,结合区块链技术构建去中心化干扰监测网络,利用智能合约实现干扰源的快速定位与协同抑制,提升系统鲁棒性。

3.3 面向6G的研究

面向6G的干扰抑制研究已进入预研阶段,重点解决 太赫兹频段、智能超表面(RIS)等新技术带来的挑战。 6G高频段信号传播损耗大、易受大气吸收影响,需深度 学习模型结合信道建模技术,实时预测信道状态并动态 调整波束成形参数,补偿路径损耗。同时,RIS技术的 引入使无线环境可编程化,深度学习需与RIS相位控制 算法结合,通过智能反射面优化信号传播路径,抑制多 径干扰。此外,6G支持全息通信、空天地一体化等新场 景,干扰抑制技术需扩展至三维空间,利用图神经网络 (GNN)建模终端-基站-卫星的复杂拓扑关系,实现全局 干扰协同抑制。

3.4 智能自适应与动态优化

智能自适应与动态优化是应对5G动态干扰环境的核心能力。未来技术将构建"感知-决策-执行"闭环系统,通过终端内置传感器实时采集电磁环境数据(如频谱占用率、信号强度),结合深度学习模型预测干扰趋势,动态调整工作频段、调制方式等参数。此外,数字孪生技术将用于构建终端设备的虚拟镜像,通过仿真测试优化干扰抑制算法,缩短研发周期。智能自适应系统还需具备自我进化能力,通过在线学习持续更新模型参数,适应新型干扰攻击^[3]。

结束语

基于深度学习的5G智能终端射频信号干扰抑制技术,为应对复杂多变的干扰环境提供了创新且高效的解决方案。通过干扰信号精准识别、自适应滤波、多域联合抗干扰等关键技术,结合实时性优化与对抗攻击防御,显著提升了5G通信的稳定性与可靠性。随着深度学习算法的持续演进和5G技术的广泛应用,该领域有望不断突破。未来,我们将进一步探索更先进的模型架构与算法,推动技术向更高性能、更低功耗发展,为5G智能终端在各行业的深度应用筑牢通信根基,开启万物智联新篇章。

参考文献

[1]张立亚,马征,郝博南,等.矿用5G通信信号传输的干扰监测技术[J].工矿自动化,2024,50(11):62-69.

[2]王丽.5G无线信号在城市地铁覆盖方案的探究[J]. 电信快报,2022,(01):28-34.

[3]姜云天,王云龙.基于深度学习的5G智能终端射频信号干扰抑制技术[J].中国宽带,2024,20(04):100-102.