商用汽车燃油系统装配工艺分析与优化

任敏超 马小军 李阿勇 冷冠雄 陕西重型汽车有限公司 陕西 西安 710200

摘 要:商用汽车燃油系统装配工艺对整车性能至关重要。其核心组成涵盖多模块,装配要求严格,与整车性能紧密相连。当前关键装配工艺存在扭矩偏差、定位不准等问题。优化策略包括制定标准化手册、引入模块化预装、升级装配设备与检测技术、完善质量管控体系等。优化后可提升装配质量、效率,降低成本。为保障优化落地,需强化员工培训、建立激励机制,并与供应商深度合作,推动零部件适配性优化。

关键词: 商用汽车; 燃油系统; 装配工艺; 分析与优化

引言:商用汽车燃油系统作为车辆动力输出的核心支撑,其装配工艺的优劣直接关乎整车性能、安全与成本。当前,燃油系统装配虽已形成涵盖管路连接、核心部件安装及密封性检测等较为完整的工艺体系,但在实际操作中仍存在人工操作差异大、部件定位精度低、微小泄漏检测难等问题,影响装配质量与生产效率。为突破这些瓶颈,需从工艺标准化、设备与技术升级以及质量管控体系完善等多维度入手,探索优化策略。本文将深入剖析商用汽车燃油系统装配工艺现状,提出针对性优化方案,并阐述优化后的效益与保障措施,为行业提供参考。

1 商用汽车燃油系统装配工艺基础

1.1 燃油系统核心组成与装配特性

燃油系统作为车辆动力输出的关键支撑,其核心组成涵盖多个重要模块。其中,储油模块负责燃油的存储;输送模块保障燃油稳定输送至各部位;过滤模块可有效滤除燃油中的杂质;喷射模块精准控制燃油喷射量与时机;控制模块则对整个系统进行智能调控。在装配特性方面,各部件需满足高压密封要求,以防止燃油泄漏;具备抗振动冲击能力,适应复杂工况;实现精准对接,确保系统正常运行。同时,装配全程要严格避免杂质进入,防止引发堵塞或部件磨损等问题。

1.2 装配工艺的核心要求与标准

燃油系统装配必须严格遵循行业规范,以确保系统性能与安全性。在量化指标方面,要精准把控管路连接扭矩,防止因扭矩不当引发泄漏或管路损坏;合理控制密封件压缩量,保障良好的密封效果;精确设定部件安装间隙,保证部件正常运转与协同工作。同时,装配过程对清洁度要求极高,避免杂质污染系统;密封性需经严格检测,杜绝燃油泄漏隐患;电气连接要确保可靠性,以此保障装配后的燃油系统能稳定实现动力供给,

满足车辆安全运行的需求。

1.3 装配工艺与整车性能的关联

装配工艺的优劣对整车性能有着深远影响。若管路连接扭矩不足,在车辆运行中,燃油易泄漏,不仅造成资源浪费,更会引发火灾等重大安全隐患。滤清器安装若出现倾斜,会降低其过滤效率,使杂质进入喷油嘴,加剧磨损,进而降低燃油经济性,增加使用成本。传感器装配偏差会导致油量检测数据不准确,影响驾驶员对车辆状态的判断。可见,装配工艺的精度与稳定性,直接决定了燃油系统功能的正常发挥,与整车的动力输出、行驶安全及运营成本紧密相连^[1]。

2 商用汽车燃油系统关键装配工艺分析

2.1 燃油管路连接工艺

燃油管路的可靠连接对于燃油系统的安全稳定运行 至关重要, 其连接工艺主要分为硬管连接与软管连接两 类。(1)硬管连接通常采用螺纹连接搭配密封垫圈的 结构形式。在连接过程中, 需借助扭矩扳手, 并严格按 照预设扭矩值进行紧固操作。这是因为扭矩过小,会导 致连接不紧密, 出现燃油泄漏的隐患; 而扭矩过大, 则 可能使螺纹损坏,影响连接的强度与密封性。(2)软 管连接则采用卡箍紧固的方式。安装时,要确保卡箍精 确居中对齐接口,紧固后仔细检查软管状态,保证其无 褶皱、无偏移现象。同时,还需测量软管与周边部件的 间隙, 防止因运行过程中的振动导致软管与周边部件摩 擦,进而造成破损,引发燃油泄漏。(3)当前燃油管路 连接工艺仍存在一些问题。在硬管连接中,人工使用扭 矩扳手紧固时, 由于操作人员的技能水平和熟练程度差 异,容易出现扭矩偏差,影响连接质量。在软管连接方 面,卡箍位置的确定主要依赖操作人员的经验判断,缺 乏统一的量化标准,导致不同批次或不同操作人员安装 的软管连接一致性较差,给燃油系统的长期稳定运行带

来潜在风险。

2.2 核心部件安装工艺

在燃油系统中,核心部件的安装工艺直接关乎系统 性能与可靠性,以下是关键部件的装配要点。(1)油箱 安装时,要先精准定位支架,仔细调整其与车架的相对 位置,保证油箱各接口与对应部件严格对齐,随后使用 螺栓牢固固定。安装完成后,需对油箱晃动量进行细致 检查,确保其在规定范围内,避免因晃动过大影响燃油 供给稳定性。(2)燃油泵安装要依托油箱内部预设的定 位槽,将泵体平稳放置,使其紧密贴合油箱底部,保证 燃油能够充分被抽取。同时, 在电气插头处涂抹防水密 封胶,防止水分侵入导致电气故障。(3)喷油嘴安装 前,要彻底清洁接口处的油污,避免杂质影响密封性。 接着涂抹专用润滑脂,按照规定顺序紧固螺栓,并确保 喷油嘴轴线与安装孔轴线精准对齐,以保证燃油喷射方 向和角度准确。(4)当前安装工艺存在一些问题。油箱 定位主要依赖人工目视校准,不仅效率低下,而且容易 出现较大偏差。喷油嘴安装后,缺乏即时有效的精度检 测手段,难以在第一时间发现安装问题并进行调整,可 能为后续运行埋下隐患。

2.3 密封性检测工艺

在燃油系统的制造与维护中, 密封性检测工艺是确 保系统安全可靠运行的关键环节, 其检测流程主要分为 部件单独检测与系统整体检测。(1)部件单独检测采用 气压测试法。将待测部件置于专用测试装置中,向其内 部充入一定压力的气体, 随后进行保压处理。在保压期 间,密切观察压力变化情况。若压力保持稳定,则表明 该部件密封性能良好; 若压力出现明显下降, 则说明部 件存在泄漏问题,需进一步排查修复。(2)系统整体检 测在所有部件装配完成后进行,分为低压与高压两种检 测工况。在检测过程中,采用肥皂水涂抹系统各接口处 的方法, 若接口处有气泡产生, 则可判定该位置存在泄 漏。(3)当前的密封性检测工艺仍存在一些不足。部分 微小泄漏在常规气压测试中难以被察觉,这些微小泄漏 在初期可能不会对系统性能产生明显影响, 但随着使用 时间的延长,在燃油的腐蚀、压力的持续作用等因素影 响下, 微小泄漏可能会逐渐扩大, 最终导致后期使用中 出现渗漏现象,不仅会造成燃油浪费,还可能引发安全 隐患, 因此需要进一步优化检测工艺以提高检测精度。

3 商用汽车燃油系统装配工艺优化策略

3.1 工艺标准化与流程优化

为提升燃油系统装配的质量与效率,降低人为因素 和流程不合理带来的不良影响,特提出以下标准化优化 方案。(1)制定全面且细致的《燃油系统装配工艺操作 手册》。该手册需精准明确各工序的操作步骤,详细到 每一个动作和环节,确保操作人员有章可循。同时,清 晰标注所需工具的型号,避免因工具使用不当而影响装 配质量。对于各项参数标准,要给出精确的数值范围和 严格的控制要求,如扭矩大小、压力值等。为增强手册 的实用性和可操作性,还需配套图文指导,以直观的示 意图展示操作要点和部件位置;制作视频教程,通过动 态演示让操作人员更清晰地了解装配流程和技巧, 从而 有效减少人工操作差异,提升装配的一致性和稳定性[2]。 (2) 优化装配流程,引入"模块化预装"模式。将关联 性较强的相关部件先在预装工位组装为独立模块, 在预 装过程中可进行初步的质量检查和调试。完成预装后, 再将整体模块安装到总装线上。这种模式不仅能显著缩 短总装线的装配时间,提高生产效率,还能降低部件在 频繁搬运和多次装配过程中损坏的风险,进一步提升产 品质量和生产效益。

3.2 装配设备与检测技术升级

为进一步提升燃油系统装配的质量与效率,降低人 为因素和传统检测方法的局限性带来的影响,需对装配 设备与检测技术进行全面升级。(1)在管路连接环节, 引入带数据存储功能的自动扭矩扳手。该扳手能够按照 预设的精确扭矩值自动完成紧固操作,有效避免了人工 紧固时因经验不足或操作失误导致的扭矩偏差问题。同 时,它还能实时记录每一次紧固的扭矩数据,并将这些 数据上传至管理系统,实现工序的可追溯性。一旦出现 质量问题, 可迅速定位问题环节, 为质量分析和改进提 供有力依据。(2)针对部件定位难题,采用视觉引导系 统。该系统利用高清摄像头和先进的图像处理算法,能 够快速、准确地识别部件的位置和姿态,并辅助操作人 员或自动化设备将部件精准对齐。相比传统的人工目视 定位,大大提升了定位精度和效率,减少了因定位不准 确而导致的装配误差和返工情况。(3)在密封性检测 方面,升级为氦质谱检漏仪。利用氦气具有高渗透性的 特性,该仪器能够检测出极其微小的泄漏,其检测灵敏 度远高于传统的肥皂水检测方法。这有助于及时发现潜 在的泄漏隐患,确保燃油系统的密封性能达到高标准要 求,提高产品的可靠性和安全性。

3.3 质量管控体系完善

为切实保障燃油系统的装配质量,构建一套严谨且 全面的全流程质量管控机制势在必行。(1)在装配前, 需着重强化零部件入场检验环节。引入先进的自动化检 测设备,这些设备凭借高精度的传感器和智能算法,能 够对零部件的尺寸精度、性能参数等进行快速、准确的 检测,将不符合质量标准的不合格部件及时剔除,从源 头上杜绝劣质零部件流入装配流程,为后续的高质量装 配奠定坚实基础。(2)装配过程中,设置关键工序质 量控制点至关重要。在这些关键节点,实行"自检+互 检 + 专检"的三级检验制度。操作人员先进行自检,确 保自身操作符合规范;随后相邻工序人员互检,起到相 互监督和提醒的作用;最后由专业质检人员进行专检, 以专业的知识和丰富的经验严格把关。一旦发现偏差, 立即停机调整,避免问题扩大化,保证每一道工序的装 配质量。(3)装配完成后,建立详细的燃油系统质量档 案。档案中记录部件型号、装配参数、检测数据等关键 信息。车辆出厂后,通过售后数据反馈,深入分析常见 故障与装配工艺之间的关联,依据分析结果持续迭代优 化工艺标准,形成质量管控的闭环,不断提升燃油系统 的整体质量水平。

4 装配工艺优化的效益与保障措施

4.1 优化后的核心效益

工艺优化为燃油系统装配带来了多维度的实际价值。(1)质量层面,标准化操作手册的制定与先进检测设备的应用,极大提升了装配质量。标准化流程减少了人工操作的随意性,设备升级如氦质谱检漏仪能精准检测微小泄漏,使得燃油系统泄漏故障率显著降低。同时,视觉引导系统助力喷油嘴精准装配,提升了其工作精度,进而改善了车辆燃油经济性,降低了能源消耗。(2)效率层面,模块化预装模式将相关部件提前组装成模块,减少了总装线的装配工序,自动化设备的应用则加快了操作速度,二者协同使总装线装配节拍大幅缩短,单台车辆燃油系统装配时间明显减少,提高了整体生产效率。(3)成本层面,质量故障的减少直接降低了售后维修成本,自动化设备替代部分人工操作,从长期来看可有效降低人力成本。此外,装配缺陷的减少也减少了零部件报废浪费,进一步控制了生产成本^[3]。

4.2 优化落地的保障措施

(1) 在技术与管理层面,需采取有力支撑策略以

推动燃油系统装配工艺优化落地。技术上,强化员工培 训至关重要。针对新引入的设备与革新后的工艺、精心 组织专项培训,详细讲解操作要点、技术原理及安全规 范。培训结束后设置严格考核,唯有考核合格者方可上 岗操作,确保员工熟练掌握新技能。管理方面,建立 工艺优化激励机制, 鼓励一线员工结合实际提出改进建 议,对经评估有效的提案给予物质与精神奖励,充分调 动员工参与工艺优化的积极性。(2)从供应链协同维度 出发,为保障燃油系统装配工艺优化顺利推进,需与零 部件供应商展开深度合作。积极推动供应商对零部件设 计进行适配性优化, 以契合优化后的装配工艺。例如, 统一零部件接口尺寸,可提升装配的通用性与便捷性, 减少适配问题;增加定位基准,能提高装配精度与效 率。通过这些举措,确保上下游工艺衔接紧密、顺畅无 阻,为装配工艺优化构建稳固的供应链支撑体系,助力 企业提升整体生产效能与产品质量。

结束语

商用汽车燃油系统装配工艺的优化,从基础组成与特性出发,深入剖析关键装配工艺,针对性提出标准化、设备升级及质量管控等优化策略。这些优化举措在质量、效率与成本层面带来了显著效益,有效提升了燃油系统性能与整车运行表现。而要确保优化成果切实落地,技术管理上的员工培训与激励机制不可或缺,供应链协同层面的零部件适配优化也至关重要。未来,随着技术不断进步与行业持续发展,燃油系统装配工艺需持续创新优化,以适应市场变化,为商用汽车行业的稳健发展提供坚实有力的支撑,推动行业迈向更高质量的发展阶段。

参考文献

[1]蔡丽娟,史玉红,蔡佳丽.工业机器人在汽车总装车间应用中的优化措施[J].内燃机与配件,2020(20):32-33.

[2]龚克. 汽车总装工艺现状及发展趋势[J]. 时代汽车,2021,(16):135-136.

[3]武龚慕容. 简析汽车装配工艺现状及改进措施[J]. 南方农机,2019,50(07):80.