基于OAM拓扑模式复用的水声通信技术进展

李晖 ( 1.南京信息工程大学滨江学院 2.海南大学信息与通信工程学院 )

徐 洁 ( 海南大学信息与通信工程学院 )

王 厚 ( 海南大学信息与通信工程学院 )

李 千 ( 海南大学信息与通信工程学院 )

石崇岳 ( 海南大学信息与通信工程学院 )

https://doi.org/10.37155/2717-5170-0204-1

Abstract

将轨道角动量(OAM)理论引入水声通信中来,利用不同拓扑模式螺旋声波内在正交性,构建基于OAM拓扑模式复用(TCM)的多入多出(MIMO)水声系统,获得更高信道容量和频谱效率。理论上拓扑模式可以无限制的增大、即模式复用的次数没有限制,基于此复用的MIMO系统将获得更高的频谱利用率。本文概述了浅海和深海水声信道的差异,描述了水声OAM-MIMO技术的现状和发展情况,并提出了未来可能遇到的技术挑战和问题。OAM-TCM在水声通信的应用前景令人兴奋,即存在机遇、也面临巨大的技术风险。

Keywords

水声通信; MIMO; 螺旋声波; 轨道角动量; 拓扑模式复用

Full Text

PDF

References

[1]K. Pelekanakis, A. B. Baggeroer. Exploiting space-time-frequency diversity with MIMO- OFDM for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2011,36 (4):502-513.
[2]C. Z. Shi, M. Dubois, Y. Wang, X. Zhang. High-speed acoustic communication by multiplexing orbit angular momentum[J]. Proceedings of the National Academy of Sciences, 2017,144(28):7250-7253.
[3]朱敏,武岩波.水声通信技术进展[J].中国科学院院刊, 2019,34(3):288-296.
[4]李宏升,岳军,金久才,陈冰泉,邓剑平,高洪秀,刘尊年,孙志坚.蓝绿激光水下通信技术综述[J].遥测遥控, 2015,36(5):16-22.
[5]H. H. Zhu, S. C. Piao, H. G. Zhang, W. Liu. Waveguide invariant estimation in elastic Pekeris waveguide[J]. Chinese Journal of Acoustic, 2017, 36(1):113-129.
[6]杨坤德,李辉,段睿.深海声传播信道和目标被动定位研究现状[J].中国科学院院刊, 2019,34 (3):314-320.
[7]孙学宏,李强,庞丹旭,曾志民.轨道角动量在无线通信中的研究新进展综述[J].电子学报.2015,43(11):2305-2314.
[8]赵生妹,蒋欣成,巩龙延,程维文,郑宝玉.轨道角动量态复用通信研究[J].南京邮电大学学报, 2015,35(6):1-13.
[9]S. Gspan, A. Meyer, S. Bernet, M. R. Marte. Optoacoustic generation of a helicoidal ultrasonic beam[J]. Journal of the Acoustical Society of America, 2004,115(3):1142-1146.
[10]J. L. Ealo, J. C. Prieto, F. Seco. Airborne ultrasonic vortex generation using flexible ferroelectrets[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2011, 58(8):1651.
[11]梁彬,程建春.声波的“漩涡”——声学轨道角动量的产生、操控与应用[J].物理, 2017,46(10): 658-668.
[12]A. D. Wang, L. Zhu, Y. F. Zhao, S. H. Li, W. C. Lv, J. Xu, J. Wang. Experimental demonstration of a feedback-assisted orbited angular momentum-based underwater wireless optical link across the underwater-to-air interface[C]. 16th International Conference on Optical Communications and Networks. Wuzhen, China, Aug, 7-10, 2017:1-3.
[13]K. S. Morgan, E. G. Johnson. B. M. Cochenour. Attenuation of beams with orbit angular momentum for underwater communication system[C]. IEEE OCEANS-MTS. Washington, USA, Oct. 19-22, 2015: 1-3.
[14]L. Li, Y. X. Ren, Y. W. Cao, et al. CMA equalization for a 2 Gb/s orbit angular momentum multiplexed optical underwater link through thermally induced refractive index inhomogeneity[C]. 2016 Conference on Lasers and Electro-Optics. San Jose, USA, June 5-10, 2016:1-2.
[15]S. M. Mohammadi, L. K. S. Daldorff, K. Forozesh, B. Thidé, J. E. S. Bergman, B. Isham, R. Karlsson, T. D. Carozzi. Orbital angular momentum in radio: Measurement methods[J]. Radio Science, 2010,45(4):1-14.
[16]B. T. Hefner, P. L. Marston. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater system[J]. Journal of the Acoustical Society of America, 1999,106(6):3313-3316.
[17]T. Brunet, J. L. Thomas, R. Marchiano, F. Coulouvrat. Experimental of observation of azimuthal shock waves on nonlinear acoustical vortices[J]. New Journal of Physics, 2009,11: 013002.
[18]X. Jiang, Y. Li, B. Liang, J. C. Cheng, L. K. Zhang. Convert acoustic resonances to orbit angular momentum[J]. Physical Review Letters, 2016, 117(3):034301.
[19]L. P. Ye, C. Y. Qiu, J. Y. Lu, K. Tang, H. Jia, M. Z. Ke, S. S. Peng, Z. Y. Liu. Making sound vortices by metasurfaces[J]. AIP Advances, 2016,6:085007.
[20]C. J. Naify, C. A. Rohde, T. P. Martin, M. Nicholas, M. D. Guild, G. J. Orris. Generation of topological diverse acoustic vortex beams using a compact metamaterial aperture[J]. Applied Physics Letters, 2016,108:223503.
[21]X. Jiang, J. J. Zhao, S. L. Liu, B. Liang, X. Y. Zou, J. Yang. Broadband and stable acoustic vortex emitter with multi-arm coiling slits[J]. Applied Physics Letters, 2016,108:203501
[22]邹丽,王乐,张士兵,赵生妹.基于波前校正的轨道角动量复用通信系统抗干扰研究[J].通信学报, 2015,36(10):76-84.
[23]J. Wang, J. Y. Yang, I. M. Fazal, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012,6(7): 488-496.
[24]B. Thide, H. Then, J. Sjoholm, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007,99 (8):87-91.
[25]F. Tamburini, E. Mari, A. Sponselli, B. Thide, A. Bianchini, F. Romanato. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012,14:033001.
[26]张维特.基于射频电磁涡旋的新型复用通信技术研究[D].浙江大学, 2017.
[27]张晗,杨军,毕宏振,王目光.一种基于轨道角动量复用技术的水声通信方法及系统[P].国家发明专利.CN, 201810424724.7.
[28]温生辉,蔡启富,汤军健,蔡嵩.厦门海域浅水三维潮流场动力学模型[J].海洋学报, 2003,23(2): 1-17.
[29]杨定康,王彪.水声FBMC通信的双向判决反馈均衡研究[J].舰船科学技术, 2019,41(21): 152-154.
[30]Q. Y. Li, C. B. He, Q. F. Zhang, K. J. Cheng. Passive time reversal based hybrid time-frequency domain equalizer for underwater acoustic communication[C]. IEEE International Conference on Signal Processing, Communications and Computing, 2016:1-6.
[31]刘梦,刘威,周志刚.基于线性因子更新的频域迭代判决反馈均衡[J].信号处理, 2019,35(10):1739-1746.
[32]J. Huang, S. Zhou, Z. Wang. Performance results of two iterative receivers for distributed MIMO OFDM with large Doppler deviations[J]. IEEE Journal Oceanic Engineering, 2013,38(2): 347-357.
[33]M. Beheshti, M. J. Omidi, A. M. Doost-Hoseini. Frequency-domain equalization for MIMO- OFDM over doubly selective channels[C]. 5th International Symposium on Telecommunications, 2010:1-6.
[34]X. Ma, C. Zhao, G. Qiao. The underwater acoustic MIMO OFDM system channel equalizer basing on independent component analysis[C]. WRI International Conference on Communications and Mobile Computing, 2009:568-572.
[35]M. Beheshti, M. J. Omidi, A. M. Doost-Hoseini. Time-domain block and per-tone equalization for MIMO-OFDM in shallow underwater acoustic communication[J]. Wireless Personal Communications, 2012,71(2):1193-1215.
[36]J. X. Hao, Y. R. Zheng, J. T. Wang, J. Song. Dual PN padding TDS-OFDM for underwater acoustic communication[C]. 2012 Oceans, 2012:1-5.
[37]Y. Zhang, Y. V. Zakharov, J. Li. Soft-decision- driven sparse channel estimation and Turbo equalization for MIMO underwater acoustic communications[J]. IEEE Access, 2018,6:4955- 4973.
[38]Y. X. Ren, G. D. Xie, H. Huang, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 2014,39 (10):2845-2852.
[39]Y. X. Ren, G. D. Xie, H. Huang, et al. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link[J]. Optica, 2014, 1(6):376-384.
[40]Y. X. Ren, G. D. Xie, H. Huang, et al. Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength[J]. Optics Letters, 2015,40(10):2249-2300.
[41]G. D. Xie,Y. X. Ren, H. Huang, et al. Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials- based stochastic-parallel gradient descent algorithm. Optics letters[J], 2015,40(7): 1197-1200.
[42]R. W. Gerchberg. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972,35: 237-250.
[43]M. I. Dedo, Z. Wang, K. Guo, Z. Y. Guo. OAM mode recognition based on joint scheme of combining the Gerchberg-Saxton (GS) algorithm and convolutional neural network[J]. Optics Communications, 2020,456:124696.
[44]J. Hill, M. D. Piggott, D. A. Ham, E. E. Popova, M. A. Srokosz. On the performance of a generic length scale turbulence model within an adaptive finite element ocean model[J]. Ocean Modelling. 2012,56:1-15.
[45]Y. J. Smith, H. S. Takhar. The calculations of oscillatory flow in open channels using mean turbulence energy models[D]. University of Manchester, 1977.
[46]U. Svensson. Mathematical model of the seasonal thermocline[D]. University of Lund, 1978.
[47]H. Burchard, H. Baumert. On the performance of a mixed-layer model based on the k-ε turbulence closure[M]. John Wiley & Sons., Ltd, 1995.
[48]H. Burchard, O. Pertersen. Models of turbulence in the marine environment-A comparative study of two-equation turbulence models[J]. Journal of Marine Systems, 1999, 21(1):29-53.
[49]K. L. Harper, S. V. Nazarenko, S. B. Medvedev, C. Connaughton. Wave turbulence in the two-layer ocean model[J]. Journal of Fluid Mechanics, 2014:309-327.
[50]杨天星,赵生妹.海洋湍流随机相位屏模型[J].光学学报, 2017,37(12):1201001.

Copyright © 2020 李晖, 徐 洁, 王 厚, 李 千, 石崇岳 Creative Commons License Publishing time:2020-08-24
This work is licensed under a Creative Commons Attribution 4.0 International License