测绘工程技术在不动产测量中的实践应用

张清澳 华东冶金地质勘查局八一二地质队 安徽 铜陵 244000

摘 要:本文介绍了测绘工程技术在不动产测量中的实践应用。首先讨论了不动产测量的重要意义和不动产测绘技术的现状,包括基本操作原则和技术工作流程。接下来,详细介绍了数字摄影测量、3S技术、RTK定位技术、三维激光扫描技术和全站仪在测量不动产中的具体应用。这些技术的应用可以提供准确的数据支持,为不动产测量提供高效和实时的解决方案。

关键词:测绘工程技术;不动产测量;实践应用

引言:不动产测量是房地产管理中的一项重要工作,其目的是为了确定不动产的位置、面积、权属等基本信息。随着科技的发展和房地产管理的需要,测绘工程技术在不动产测量中的应用越来越广泛。这些技术的应用可以大大提高测量精度和效率,为不动产管理提供准确可靠的数据支持。因此,测绘工程技术的不动产测量具有重要的实践意义和应用价值。

1 不动产测量的重要意义

不动产测量是土地资源管理、利用的重要手段,对 于国家和社会的可持续发展具有重要意义。首先,不动 产测量可以为土地资源的合理利用提供科学依据。通过 测量,可以了解土地资源的分布情况、质量状况、利用 现状等信息,为制定土地资源管理政策和规划提供科学 依据。例如,通过对城市土地资源的测量,可以确定城 市的发展方向和规模,避免城市过度扩张和土地浪费。 其次,不动产测量可以为财产权益的保障提供重要支 持。在不动产交易、抵押、征收等过程中,测量结果可 以为财产权益的评估、保护提供重要依据。例如,在房 屋交易中,通过测量房屋面积、产权范围等参数,可以 确保交易的公平、公正,避免产权纠纷的发生。最后, 不动产测量还可以为城市规划、环境保护等提供技术支 持。通过对城市建筑物的测量,可以了解城市建筑物的 分布情况、结构特点等信息,为城市规划提供技术支 持。同时,通过对环境因素的测量,可以了解环境质量 状况、污染情况等信息,为环境保护提供技术支持。

2 不动产测绘技术基本操作原则

在不动产测绘工作中,需要遵循一些基本操作原则,以确保测绘结果的准确性和可靠性。首先,不动产测绘技术需要遵循国家法律法规和相关技术标准。在测绘过程中,必须严格遵守国家和地方颁布的土地、房产、林业、矿产等方面的法律法规和政策规定,按照规

定的程序和步骤进行操作。同时,还要遵循国家和地方 制定的相关技术标准,如《不动产测量规范》、《土地 调查技术规程》等,以确保测绘结果的准确性和规范 性。其次,不动产测绘技术需要注重实地调查和现场测 量。不动产资源的分布、数量、质量等方面具有很强的 实地性和现场性, 因此, 在测绘过程中, 必须注重实地 调查和现场测量,准确掌握不动产资源的实际情况,避 免因信息不准确而产生误差[1]。第三,不动产测绘技术需 要注重数据的准确性和完整性。不动产资源的调查、测 量、计算、统计等过程都需要大量的数据支持,而这些 数据的准确性和完整性直接影响到测绘结果的准确性和 可靠性。因此,在测绘过程中,必须注重数据的准确性 和完整性, 采取有效措施确保数据的准确性和完整性。 最后,不动产测绘技术需要注重保密和安全。不动产资 源的信息涉及到国家机密、商业机密、个人隐私等方 面,因此,在测绘过程中,必须注重保密和安全,严格 遵守国家和地方制定的保密和安全规定,确保不动产资 源信息的安全性和保密性。

3 不动产测绘技术工作流程

不动产测量是保障不动产登记、交易、管理等活动的重要基础,其工作流程包括以下几个步骤:首先,进行准备工作。在这一阶段,需要确定测量范围、测量方法、测量人员、测量时间等相关信息,同时准备好所需的测量设备、工具和材料。其次,进行控制测量。控制测量是指在不动产测量中建立控制网,以便对测量数据进行准确的定位和测量。在控制测量中,需要确定控制点的位置和数量,并使用全站仪、GPS等设备进行测量。第三,进行碎部测量。碎部测量是指对不动产的形状、大小、位置等信息进行详细测量。在碎部测量中,需要使用全站仪、激光测距仪等设备进行测量,并将测量结果记录在图纸或数据表中。第四,进行数据处理和分

析。在完成测量工作后,需要对测量数据进行处理和分析,以确定不动产的位置、大小、形状等信息。在数据处理和分析中,需要使用CAD、ArcGIS等软件进行数据处理和分析。最后,进行成果整理和输出。在完成数据处理和分析后,需要将测量结果整理成测量报告、图表、数据表等形式,并提交给相关部门或人员进行使用。

4 不动产测绘技术的现状

不动产测绘技术是围绕房屋、土地等不动产权益的 确认、调查、评估而展开的一系列技术和方法。目前, 不动产测绘技术已经发展得较为成熟,并被广泛应用于 房地产、城市规划、环境保护等领域。首先,不动产测 绘技术提供了准确、全面的不动产基础信息。通过技术 手段,如全站仪、GPS等,对房屋、土地等不动产权益 的形状、大小、位置等信息进行采集和处理, 形成具有 法律效力的不动产登记资料。这些基础信息不仅是房地 产管理的重要依据, 也是城市规划、土地资源管理等方 面的数据支持。其次,不动产测绘技术还为不动产权益 的交易、评估、征收提供了重要的技术支持。在不动产 权益的交易中, 测绘技术可以确定权益的范围和大小, 为交易双方提供准确的参考信息。在评估中, 测绘技术 可以提供土地、房屋等不动产权益的实物状况和价值评 估,为金融机构、政府部门提供决策支持。在征收中, 测绘技术可以确定征收范围和面积, 为政府部门的决策 提供数据支持。此外,不动产测绘技术还为城市规划和 环境保护等方面提供了重要的数据支持[2]。在城市规划 中,测绘技术可以提供城市土地利用状况、建筑物分布 等信息,为城市规划师提供决策支持。在环境保护中, 测绘技术可以提供土地利用变化、生态环境状况等信 息,为环保部门提供数据支持。

5 测量不动产中测绘工程技术的应用

5.1 数字摄影测量的技术应用

数字摄影测量具有精度高、速度快、效率高等优点。数字摄影测量技术是基于数字影像和计算机技术的一种测量方法,通过数字相机或数字扫描仪获取不动产的数字影像,然后利用计算机软件进行测量、处理和可视化表达。相比传统的测量方法,数字摄影测量技术具有无需接触、无需破坏、测量精度高、速度快的优点,同时也可以提高测量效率,降低测量成本。在不动产测量中,数字摄影测量技术可以用于测量建筑物的尺寸、形状、高度、面积、容积率等参数,也可以用于土地调查、城市规划、环境监测等领域。例如,通过数字相机拍摄建筑物的正反两面照片,利用计算机软件进行图像处理和三维重建,可以快速准确地获取建筑物的尺寸和

形状;通过数字扫描仪获取土地的数字影像,可以快速准确地获取土地的面积、形状、地形地貌等参数;通过数字相机或无人机拍摄建筑物的三维模型,可以快速准确地获取建筑物的三维数据,为城市规划提供科学依据^[3]。目前,数字摄影测量技术已经得到了广泛的应用和推广,在不动产测量领域发挥着越来越重要的作用。同时,随着计算机技术和数字影像技术的不断发展,数字摄影测量技术也在不断升级和完善,为不动产测量提供了更加精准、高效、便捷的解决方案。

5.2 3S技术应用

随着3S技术的不断发展, 其在不动产测绘中的应用 也日益广泛。(1)全球定位系统(GPS)。GPS是一种 利用卫星进行定位的技术,具有精度高、覆盖范围广、 实时性强等优点。在不动产测绘中, GPS技术主要用于采 集不动产的空间位置信息,包括点、线、面等要素。例 如,通过GPS技术可以精确地测量房屋、土地、林地的位 置和边界, 为不动产登记和管理提供精确的基础数据。 (2) 遥感技术(RS)。RS技术是一种利用传感器获取 地表信息的技术,具有覆盖范围广、信息量大、实时性 强等优点。在不动产测绘中,RS技术主要用于获取不动 产的图像信息,包括房屋、土地、林地的分布、结构、 形态等。通过RS技术可以快速地获取不动产的分布情 况,为不动产登记、规划和管理提供直观的基础数据。 (3) 地理信息系统(GIS)。GIS是一种利用计算机技术 进行空间数据管理和分析的技术, 具有数据量大、可视 化强、空间分析能力强等优点。在不动产测绘中, GIS技 术主要用于对不动产空间数据进行管理和分析,包括房 屋、土地、林地的属性信息、空间位置、分布情况等。通 过GIS技术可以实现对不动产空间数据的可视化展示、查 询、编辑、分析等功能,提高不动产管理的效率和精度。

5.3 RTK定位技术应用

随着科技的发展,定位技术已经成为了不动产测量中的重要工具。首先,RTK定位技术是一种基于实时接收卫星信号的定位技术。相比于传统的静态定位技术,RTK定位技术具有更高的精度和更快的速度。在不动产测量中,精度和速度都是非常重要的因素。通过使用RTK定位技术,可以大大提高测量效率,同时保证测量的精度。其次,RTK定位技术的应用范围非常广泛。不仅可以用于测量建筑物、土地等不动产,还可以用于测量地形、地貌等自然不动产。通过RTK定位技术,可以精确地测量出不动产的位置、面积、高度等信息,为不动产的评估、交易和开发提供了准确的数据支持。再次,RTK定位技术具有较高的经济效益。相比于传统的

测量方式,RTK定位技术可以更快、更准确地完成测量任务,从而减少了测量时间和成本。同时,由于RTK定位技术的精度高,可以避免因为测量误差带来的经济损失。最后,RTK定位技术还具有较高的社会效益^[4]。通过RTK定位技术,可以更加准确地评估不动产的价值,从而为房地产市场提供更加透明和公正的信息。同时,RTK定位技术还可以用于城市规划、环境保护等领域,为社会发展做出贡献。

5.4 三维激光扫描技术应用

不动产测绘是一项重要的地理空间数据采集和处理 工作,其中三维激光扫描技术正在被越来越广泛地应 用。这种技术可以通过激光测距仪快速获取物体表面的 三维坐标和纹理信息, 为不动产测绘提供更加精确、高 效、实时的数据支持。首先,三维激光扫描技术可以快 速获取建筑物、地形等不动产物体的表面数据, 通过点 云数据的处理和分析,得到高精度的三维模型。相比传 统的测量方法,如全站仪、GPS等,三维激光扫描技术的 精度更高、效率更快, 能够大大提高测绘的效率和准确 性。其次,三维激光扫描技术还可以获取不动产物体的 纹理信息,通过对扫描得到的点云数据添加颜色信息, 可以在三维模型上还原出不动产物体的真实面貌。这为 不动产的评估、规划、设计等工作提供了更加直观、真 实的数据支持。此外,三维激光扫描技术还可以与GIS (地理信息系统)技术结合应用,将不动产物体的三维 模型与地理空间信息进行集成,实现不动产数据的可视 化和空间分析。例如,可以通过三维模型分析建筑物的 结构、高度、面积等信息,为城市规划、土地资源管 理、房地产市场分析等提供数据支持。

5.5 全站仪的应用

不动产测绘中,全站仪是一种常用的测量仪器。全站仪集电子经纬仪、光电测距仪和数据记录器于一体,可以自动测角、自动测距、自动计算并提供电子记录等多种功能。在不动产测绘中,全站仪可以用于土地、房屋、林业、矿产等不动产资源的调查、测量、计算、统

计等方面,提高测量效率和精度。首先,全站仪在不动 产测绘中可以用于实地调查和现场测量。通过全站仪的 电子经纬仪功能,可以准确测量不动产资源的位置、高 度、角度等信息,并通过自动计算和记录功能,快速得 到测量结果,提高测量效率和精度。其次,全站仪在不 动产测绘中可以用于绘制图形和制作图表。全站仪内置 的电子平板和内置计算功能可以快速绘制图形和制作图 表, 使测量结果更加直观, 为不动产资源的开发和利用 提供更加准确的依据。第三,全站仪在不动产测绘中可 以用于数据统计和分析。全站仪可以自动计算和记录测 量结果,并通过数据导出功能将测量结果转换成Excel 等格式,方便进行数据统计和分析。通过数据统计和分 析,可以了解不动产资源的分布、数量、质量等情况, 为不动产资源的开发、利用、管理等方面提供科学依据 和支撑。最后,全站仪在不动产测绘中还可以用于边界 确认和权属划分。通过全站仪的测量结果,可以准确确 定不动产资源的边界和权属,为不动产资源的开发、利 用、管理等方面提供准确的依据。

结语

综上所述,测绘工程技术在不动产测量中的实践应用十分重要。这些技术的应用为不动产测量提供了准确、高效和实时的解决方案,为不动产行业的发展提供支持。随着技术的不断发展和应用,不动产测绘技术将继续发挥重要作用,为不动产行业的发展提供更加有力的支撑。

参考文献

[1]王璐.测绘工程技术在不动产测量中的实践应用[J]. 城市建筑, 2020, 17(18): 119-120.

[2]赵荷莲.测绘工程技术在不动产测量中的实践应用 [J].工程技术研究,2020,4(21):87-88.

[3]车在良.测绘工程技术在不动产测绘中的现状及思考[J].建材与装饰,2020(13):217-218.

[4]温伟.测绘工程技术在不动产测绘中的现状及思考 [J].居业,2020(10):21-22.